These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34096706)
1. Advanced Electrostatic Model for Monovalent Ions Based on Ab Initio Energy Decomposition. Jing Z; Liu C; Ren P J Chem Inf Model; 2021 Jun; 61(6):2806-2817. PubMed ID: 34096706 [TBL] [Abstract][Full Text] [Related]
2. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. Joung IS; Cheatham TE J Phys Chem B; 2008 Jul; 112(30):9020-41. PubMed ID: 18593145 [TBL] [Abstract][Full Text] [Related]
3. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Sengupta A; Li Z; Song LF; Li P; Merz KM J Chem Inf Model; 2021 Feb; 61(2):869-880. PubMed ID: 33538599 [TBL] [Abstract][Full Text] [Related]
5. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. Yang ZZ; Li X J Phys Chem A; 2005 Apr; 109(16):3517-20. PubMed ID: 16839014 [TBL] [Abstract][Full Text] [Related]
6. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water. Reif MM; Hünenberger PH J Chem Phys; 2011 Apr; 134(14):144104. PubMed ID: 21495739 [TBL] [Abstract][Full Text] [Related]
7. A valence bond model for aqueous Cu(II) and Zn(II) ions in the AMOEBA polarizable force field. Xiang JY; Ponder JW J Comput Chem; 2013 Apr; 34(9):739-49. PubMed ID: 23212979 [TBL] [Abstract][Full Text] [Related]
8. The Many-Body Expansion for Aqueous Systems Revisited: II. Alkali Metal and Halide Ion-Water Interactions. Heindel JP; Xantheas SS J Chem Theory Comput; 2021 Apr; 17(4):2200-2216. PubMed ID: 33709708 [TBL] [Abstract][Full Text] [Related]
9. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations. Lev B; Roux B; Noskov SY J Chem Theory Comput; 2013 Sep; 9(9):4165-75. PubMed ID: 26592407 [TBL] [Abstract][Full Text] [Related]
10. The i-TTM model for ab initio-based ion-water interaction potentials. II. Alkali metal ion-water potential energy functions. Riera M; Götz AW; Paesani F Phys Chem Chem Phys; 2016 Nov; 18(44):30334-30343. PubMed ID: 27711564 [TBL] [Abstract][Full Text] [Related]
11. Improving Condensed-Phase Water Dynamics with Explicit Nuclear Quantum Effects: The Polarizable Q-AMOEBA Force Field. Mauger N; Plé T; Lagardère L; Huppert S; Piquemal JP J Phys Chem B; 2022 Nov; 126(43):8813-8826. PubMed ID: 36270033 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic, steric, and hydration interactions favor Na(+) condensation around DNA compared with K(+). Savelyev A; Papoian GA J Am Chem Soc; 2006 Nov; 128(45):14506-18. PubMed ID: 17090034 [TBL] [Abstract][Full Text] [Related]
13. Hydration free energies of monovalent ions in transferable intermolecular potential four point fluctuating charge water: an assessment of simulation methodology and force field performance and transferability. Warren GL; Patel S J Chem Phys; 2007 Aug; 127(6):064509. PubMed ID: 17705614 [TBL] [Abstract][Full Text] [Related]
14. Force field for halide and alkali ions in water based on single-ion and ion-pair thermodynamic properties for a wide range of concentrations. Duenas-Herrera M; Bonthuis DJ; Loche P; Netz RR; Scalfi L J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158049 [TBL] [Abstract][Full Text] [Related]
15. Ab Initio Molecular Dynamics Investigation of the Solvation States of Hydrated Ions in Confined Water. Qian C; Zhou K Inorg Chem; 2023 Oct; 62(43):17756-17765. PubMed ID: 37855150 [TBL] [Abstract][Full Text] [Related]
16. Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. Piquemal JP; Perera L; Cisneros GA; Ren P; Pedersen LG; Darden TA J Chem Phys; 2006 Aug; 125(5):054511. PubMed ID: 16942230 [TBL] [Abstract][Full Text] [Related]
17. Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. Jensen KP; Jorgensen WL J Chem Theory Comput; 2006 Nov; 2(6):1499-509. PubMed ID: 26627020 [TBL] [Abstract][Full Text] [Related]
18. Alkali Metal Ion Recognition by 18-Crown-6 in Aqueous Solutions: Evidence from Local Structures. Jing Z; Zhou Y; Yamaguchi T; Ohara K; Pan J; Wang G; Zhu F; Liu H J Phys Chem B; 2023 Jun; 127(21):4858-4869. PubMed ID: 37204808 [TBL] [Abstract][Full Text] [Related]
19. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes. König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691 [TBL] [Abstract][Full Text] [Related]
20. A transferable ab initio based force field for aqueous ions. Tazi S; Molina JJ; Rotenberg B; Turq P; Vuilleumier R; Salanne M J Chem Phys; 2012 Mar; 136(11):114507. PubMed ID: 22443777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]