BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 34097119)

  • 1. Stress modulation as a means to improve yeasts for lignocellulose bioconversion.
    Brandt BA; Jansen T; Volschenk H; Görgens JF; Van Zyl WH; Den Haan R
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):4899-4918. PubMed ID: 34097119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges.
    Cripwell RA; Favaro L; Viljoen-Bloom M; van Zyl WH
    Biotechnol Adv; 2020; 42():107579. PubMed ID: 32593775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering yeasts for raw starch conversion.
    van Zyl WH; Bloom M; Viktor MJ
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1377-88. PubMed ID: 22797599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges.
    Martins LC; Monteiro CC; Semedo PM; Sá-Correia I
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6527-6547. PubMed ID: 32474799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering.
    Hasunuma T; Kondo A
    Biotechnol Adv; 2012; 30(6):1207-18. PubMed ID: 22085593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic landscape of non-conventional yeast species for different stress tolerance traits desirable in bioethanol fermentation.
    Mukherjee V; Radecka D; Aerts G; Verstrepen KJ; Lievens B; Thevelein JM
    Biotechnol Biofuels; 2017; 10():216. PubMed ID: 28924451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanolic fermentation of pentoses in lignocellulose hydrolysates.
    Hahn-Hägerdal B; Lindén T; Senac T; Skoog K
    Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world.
    Liu YJ; Li B; Feng Y; Cui Q
    Biotechnol Adv; 2020; 40():107535. PubMed ID: 32105675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of endogenous stress-tolerance related genes in Saccharomyces cerevisiae improved strain robustness and production of heterologous cellobiohydrolase.
    Lamour J; Wan C; Zhang M; Zhao X; Den Haan R
    FEMS Yeast Res; 2019 Jun; 19(4):. PubMed ID: 31073597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5163-5184. PubMed ID: 32337628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consolidated bioprocessing of starchy substrates into ethanol by industrial Saccharomyces cerevisiae strains secreting fungal amylases.
    Favaro L; Viktor MJ; Rose SH; Viljoen-Bloom M; van Zyl WH; Basaglia M; Cagnin L; Casella S
    Biotechnol Bioeng; 2015 Sep; 112(9):1751-60. PubMed ID: 25786804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential of wild yeasts for bioethanol production.
    Ruyters S; Mukherjee V; Verstrepen KJ; Thevelein JM; Willems KA; Lievens B
    J Ind Microbiol Biotechnol; 2015 Jan; 42(1):39-48. PubMed ID: 25413210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry.
    Grijalva-Vallejos N; Aranda A; Matallana E
    Int J Food Microbiol; 2020 Mar; 317():108462. PubMed ID: 31794930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.