BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34097119)

  • 41. Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis.
    Blomqvist J; South E; Tiukova I; Momeni MH; Hansson H; Ståhlberg J; Horn SJ; Schnürer J; Passoth V
    Lett Appl Microbiol; 2011 Jul; 53(1):73-8. PubMed ID: 21535044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent progress in consolidated bioprocessing.
    Olson DG; McBride JE; Shaw AJ; Lynd LR
    Curr Opin Biotechnol; 2012 Jun; 23(3):396-405. PubMed ID: 22176748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.
    Radecka D; Mukherjee V; Mateo RQ; Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM
    FEMS Yeast Res; 2015 Sep; 15(6):. PubMed ID: 26126524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.
    Pérez-Torrado R; Matallana E
    Biotechnol Prog; 2015; 31(1):20-4. PubMed ID: 25219977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review].
    Li H; Zhang X; Shen Y; Dong Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production.
    Mukherjee V; Steensels J; Lievens B; Van de Voorde I; Verplaetse A; Aerts G; Willems KA; Thevelein JM; Verstrepen KJ; Ruyters S
    Appl Microbiol Biotechnol; 2014 Nov; 98(22):9483-98. PubMed ID: 25267160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.
    Liu X; Xu W; Mao L; Zhang C; Yan P; Xu Z; Zhang ZC
    Sci Rep; 2016 Feb; 6():20361. PubMed ID: 26837707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K; Boido E; Dellacassa E; Carrau F
    Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial co-culturing systems: butanol production from organic wastes through consolidated bioprocessing.
    Jiang Y; Zhang T; Lu J; Dürre P; Zhang W; Dong W; Zhou J; Jiang M; Xin F
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5419-5425. PubMed ID: 29736820
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production.
    Dubey R; Jakeer S; Gaur NA
    J Biosci Bioeng; 2016 May; 121(5):509-16. PubMed ID: 26481160
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates.
    Claes A; Deparis Q; Foulquié-Moreno MR; Thevelein JM
    Metab Eng; 2020 May; 59():131-141. PubMed ID: 32114024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.
    Barbosa C; García-Martínez J; Pérez-Ortín JE; Mendes-Ferreira A
    PLoS One; 2015; 10(4):e0122709. PubMed ID: 25884705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation.
    Tesnière C; Brice C; Blondin B
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7025-34. PubMed ID: 26201494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial fermentation of starch- or fibre-rich feeds added with dry or pre-activated Saccharomyces cerevisiae studied in vitro under conditions simulating high-concentrate feeding for ruminants.
    Amanzougarene Z; Tejeda MP; Calvo H; de la Fuente G; Fondevila M
    J Sci Food Agric; 2020 Mar; 100(5):2236-2243. PubMed ID: 31917481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media.
    Bell PJ; Higgins VJ; Attfield PV
    Lett Appl Microbiol; 2001 Apr; 32(4):224-9. PubMed ID: 11298930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics of growth and sugar consumption in yeasts.
    van Dijken JP; Weusthuis RA; Pronk JT
    Antonie Van Leeuwenhoek; 1993; 63(3-4):343-52. PubMed ID: 8279829
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice.
    Myburgh MW; Cripwell RA; Favaro L; van Zyl WH
    Bioresour Technol; 2019 Dec; 294():122222. PubMed ID: 31683453
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanism of Tolerance to the Lignin-Derived Inhibitor
    Yan Z; Gao X; Gao Q; Bao J
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492664
    [No Abstract]   [Full Text] [Related]  

  • 60. General mechanisms of weak acid-tolerance and current strategies for the development of tolerant yeasts.
    Li M; Chu Y; Dong X; Ji H
    World J Microbiol Biotechnol; 2023 Dec; 40(2):49. PubMed ID: 38133718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.