These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34097156)

  • 1. Synergistic nanoarchitecture of mesoporous carbon and carbon nanotubes for lithium-oxygen batteries.
    Kim Y; Yun J; Shin HS; Jung KN; Lee JW
    Nano Converg; 2021 Jun; 8(1):17. PubMed ID: 34097156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium-Oxygen Batteries.
    Xue H; Wu S; Tang J; Gong H; He P; He J; Zhou H
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8427-35. PubMed ID: 26967936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Ru/CNT Cathode for Rechargeable Solid-State Li-CO
    Savunthari KV; Chen CH; Chen YR; Tong Z; Iputera K; Wang FM; Hsu CC; Wei DH; Hu SF; Liu RS
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44266-44273. PubMed ID: 34494812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation/Decomposition of Li
    Liu Y; Wang K; Peng X; Wang C; Fang W; Zhu Y; Chen Y; Liu L; Wu Y
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16214-16221. PubMed ID: 35357809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoarchitectonics of the cathode to improve the reversibility of Li-O
    Pham HTT; Yun J; Kim SY; Han SA; Kim JH; Lee JW; Park MS
    Beilstein J Nanotechnol; 2022; 13():689-698. PubMed ID: 35957677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poor Cycling Performance of Rechargeable Lithium-Oxygen Batteries under Lean-Electrolyte and High-Areal-Capacity Conditions: Role of Carbon Electrode Decomposition.
    Ono M; Saengkaew J; Matsuda S
    Adv Sci (Weinh); 2023 Aug; 10(24):e2300896. PubMed ID: 37338292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe
    Jung JW; Jang JS; Yun TG; Yoon KR; Kim ID
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6531-6540. PubMed ID: 29381322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Aligned and Laminated Nanostructured Carbon Hybrid Cathode for High-Performance Lithium-Sulfur Batteries.
    Sun Q; Fang X; Weng W; Deng J; Chen P; Ren J; Guan G; Wang M; Peng H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10539-44. PubMed ID: 26178766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Performance Cathode Material of FeF
    Lu L; Li S; Li J; Lan L; Lu Y; Xu S; Huang S; Pan C; Zhao F
    Nanoscale Res Lett; 2019 Mar; 14(1):100. PubMed ID: 30877480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium-Sulfur Batteries.
    Zhao BS; Wang L; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1212-1221. PubMed ID: 34967595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An effective integrated design for enhanced cathodes of Ni foam-supported Pt/carbon nanotubes for Li-O2 batteries.
    Li J; Zhao Y; Zou M; Wu C; Huang Z; Guan L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12479-85. PubMed ID: 25010947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimetal CoNi Active Sites on Mesoporous Carbon Nanosheets to Kinetically Boost Lithium-Sulfur Batteries.
    Luo R; Zhang Z; Zhang J; Xi B; Tian F; Chen W; Feng J; Xiong S
    Small; 2021 Jun; 17(23):e2100414. PubMed ID: 33887114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Nitrogen-Doped Graphene/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries.
    Shu C; Li B; Zhang B; Su D
    ChemSusChem; 2015 Dec; 8(23):3973-6. PubMed ID: 26559030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Composite of LiNi
    Zhang L; Fu J; Zhang C
    Nanoscale Res Lett; 2017 Dec; 12(1):376. PubMed ID: 28565884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical Void Dimension of Carbon Frameworks to Accommodate Insoluble Products of Lithium-Oxygen Batteries.
    Hwang C; Kwak MJ; Jeong J; Baek K; Yoon KY; An C; Min JW; Kim J; Lee J; Kang SJ; Jang JH; Song HK
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):492-501. PubMed ID: 34932302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Step Route Synthesized Co
    Wang P; Li C; Dong S; Ge X; Zhang P; Miao X; Zhang Z; Wang C; Yin L
    Small; 2019 Jul; 15(30):e1900001. PubMed ID: 31074926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interwoven carbon nanotubes/cerium dioxide electrocatalyst accelerating the conversion kinetics of lithium sulfide toward high-performance lithium-sulfur batteries.
    Wen G; Shi Z; Sui Y; Wang B; Zhang X; Zhang Z; Wu L
    J Colloid Interface Sci; 2022 Oct; 623():697-702. PubMed ID: 35653854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries.
    Kumankuma-Sarpong J; Tang S; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries.
    Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R
    ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.