These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34097396)

  • 1. Proton Relay in Iron Porphyrins for Hydrogen Evolution Reaction.
    Bhunia S; Rana A; Hematian S; Karlin KD; Dey A
    Inorg Chem; 2021 Sep; 60(18):13876-13887. PubMed ID: 34097396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activating Fe(I) Porphyrins for the Hydrogen Evolution Reaction Using Second-Sphere Proton Transfer Residues.
    Rana A; Mondal B; Sen P; Dey S; Dey A
    Inorg Chem; 2017 Feb; 56(4):1783-1793. PubMed ID: 28170241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Induced Protonation of the Second Coordination Sphere in a Hangman-type Iron Porphyrin Complex Promotes HER: Insights via in Situ Raman Spectroelectrochemistry.
    Ramuglia AR; Göbel M; Budhija V; Werheid M; Ly KH; Schwalbe M; Weidinger IM
    Inorg Chem; 2023 Jul; 62(26):10232-10240. PubMed ID: 37345737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins.
    Bediako DK; Solis BH; Dogutan DK; Roubelakis MM; Maher AG; Lee CH; Chambers MB; Hammes-Schiffer S; Nocera DG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15001-6. PubMed ID: 25298534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently.
    Ghatak A; Samanta S; Nayek A; Mukherjee S; Dey SG; Dey A
    Inorg Chem; 2022 Aug; 61(33):12931-12947. PubMed ID: 35939766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors Determining the Rate and Selectivity of 4e
    Chatterjee S; Sengupta K; Mondal B; Dey S; Dey A
    Acc Chem Res; 2017 Jul; 50(7):1744-1753. PubMed ID: 28686419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active Role of the Buffer in the Proton-Coupled Electron Transfer of Immobilized Iron Porphyrins.
    Márquez I; Olloqui-Sariego JL; Molero M; Andreu R; Roldán E; Calvente JJ
    Inorg Chem; 2021 Jan; 60(1):42-54. PubMed ID: 32568550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen.
    Raugei S; Helm ML; Hammes-Schiffer S; Appel AM; O'Hagan M; Wiedner ES; Bullock RM
    Inorg Chem; 2016 Jan; 55(2):445-60. PubMed ID: 26653114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO
    Amanullah S; Saha P; Dey A
    J Am Chem Soc; 2021 Sep; 143(34):13579-13592. PubMed ID: 34410125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen Reduction by Iron Porphyrins with Covalently Attached Pendent Phenol and Quinol.
    Singha A; Mondal A; Nayek A; Dey SG; Dey A
    J Am Chem Soc; 2020 Dec; 142(52):21810-21828. PubMed ID: 33320658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Catalytic O
    Pegis ML; Martin DJ; Wise CF; Brezny AC; Johnson SI; Johnson LE; Kumar N; Raugei S; Mayer JM
    J Am Chem Soc; 2019 May; 141(20):8315-8326. PubMed ID: 31042028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pendant bases as proton relays in iron hydride and dihydrogen complexes.
    Henry RM; Shoemaker RK; DuBois DL; DuBois MR
    J Am Chem Soc; 2006 Mar; 128(9):3002-10. PubMed ID: 16506781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e
    Bhunia S; Ghatak A; Rana A; Dey A
    J Am Chem Soc; 2023 Feb; 145(6):3812-3825. PubMed ID: 36744304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model.
    Surawatanawong P; Hall MB
    Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton Transfer Mechanisms in Bimetallic Hydrogenases.
    Tai H; Hirota S; Stripp ST
    Acc Chem Res; 2021 Jan; 54(1):232-241. PubMed ID: 33326230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of distal arginine residue in the mechanism of heme nitrite reductases.
    Sarkar A; Bhakta S; Chattopadhyay S; Dey A
    Chem Sci; 2023 Jul; 14(29):7875-7886. PubMed ID: 37502318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the effect of a pendent amine group poised over the secondary coordination sphere of a cobalt complex on the electrocatalytic hydrogen evolution reaction.
    Ali A; Verma RK; Das A; Paria S
    Dalton Trans; 2024 May; 53(19):8289-8297. PubMed ID: 38660950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron(II) complexes with amide-containing macrocycles as non-heme porphyrin analogues.
    Korendovych IV; Kryatova OP; Reiff WM; Rybak-Akimova EV
    Inorg Chem; 2007 May; 46(10):4197-211. PubMed ID: 17419619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.