These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Time-Dependent Density Functional Theory Study of Copper(II) Oxo Active Sites for Methane-to-Methanol Conversion in Zeolites. Curtis K; Panthi D; Odoh SO Inorg Chem; 2021 Jan; 60(2):1149-1159. PubMed ID: 33399001 [TBL] [Abstract][Full Text] [Related]
4. Theoretical Overview of Methane Hydroxylation by Copper-Oxygen Species in Enzymatic and Zeolitic Catalysts. Mahyuddin MH; Shiota Y; Staykov A; Yoshizawa K Acc Chem Res; 2018 Oct; 51(10):2382-2390. PubMed ID: 30207444 [TBL] [Abstract][Full Text] [Related]
5. Methane Over-Oxidation by Extra-Framework Copper-Oxo Active Sites of Copper-Exchanged Zeolites: Crucial Role of Traps for the Separated Methyl Group. Adeyiga O; Odoh SO Chemphyschem; 2021 Jun; 22(11):1101-1109. PubMed ID: 33786957 [TBL] [Abstract][Full Text] [Related]
6. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. Yoshizawa K; Shiota Y J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545 [TBL] [Abstract][Full Text] [Related]
7. DFT Analysis of Methane C-H Activation and Over-Oxidation by [Cu Panthi D; Adeyiga O; Odoh SO Chemphyschem; 2021 Dec; 22(24):2517-2525. PubMed ID: 34519406 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
9. Role of tyrosine residue in methane activation at the dicopper site of particulate methane monooxygenase: a density functional theory study. Shiota Y; Juhász G; Yoshizawa K Inorg Chem; 2013 Jul; 52(14):7907-17. PubMed ID: 23808646 [TBL] [Abstract][Full Text] [Related]
10. Effects of single and double active sites of Cu oxide clusters over the MFI zeolite for direct conversion of methane to methanol: DFT calculations. Nunthakitgoson W; Thivasasith A; Maihom T; Wattanakit C Phys Chem Chem Phys; 2021 Jan; 23(3):2500-2510. PubMed ID: 33465219 [TBL] [Abstract][Full Text] [Related]
11. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
12. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Woertink JS; Smeets PJ; Groothaert MH; Vance MA; Sels BF; Schoonheydt RA; Solomon EI Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18908-13. PubMed ID: 19864626 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic Definition of a Highly Reactive Site in Cu-CHA for Selective Methane Oxidation: Tuning a Mono-μ-Oxo Dicopper(II) Active Site for Reactivity. Rhoda HM; Plessers D; Heyer AJ; Bols ML; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2021 May; 143(19):7531-7540. PubMed ID: 33970624 [TBL] [Abstract][Full Text] [Related]
14. Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu Mahyuddin MH; Tanaka T; Staykov A; Shiota Y; Yoshizawa K Inorg Chem; 2018 Aug; 57(16):10146-10152. PubMed ID: 30091906 [TBL] [Abstract][Full Text] [Related]
15. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Alayon EM; Nachtegaal M; Bodi A; Ranocchiari M; van Bokhoven JA Phys Chem Chem Phys; 2015 Mar; 17(12):7681-93. PubMed ID: 25732559 [TBL] [Abstract][Full Text] [Related]
16. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295 [TBL] [Abstract][Full Text] [Related]
17. Selective oxidation of methane by the bis(mu-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. Groothaert MH; Smeets PJ; Sels BF; Jacobs PA; Schoonheydt RA J Am Chem Soc; 2005 Feb; 127(5):1394-5. PubMed ID: 15686370 [TBL] [Abstract][Full Text] [Related]
18. Theoretical modeling of the hydroxylation of methane as mediated by the particulate methane monooxygenase. Chen PP; Chan SI J Inorg Biochem; 2006 Apr; 100(4):801-9. PubMed ID: 16494948 [TBL] [Abstract][Full Text] [Related]
19. Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Dinh KT; Sullivan MM; Narsimhan K; Serna P; Meyer RJ; Dincă M; Román-Leshkov Y J Am Chem Soc; 2019 Jul; 141(29):11641-11650. PubMed ID: 31306002 [TBL] [Abstract][Full Text] [Related]
20. Methane Activation by a Mononuclear Copper Active Site in the Zeolite Mordenite: Effect of Metal Nuclearity on Reactivity. Heyer AJ; Plessers D; Braun A; Rhoda HM; Bols ML; Hedman B; Hodgson KO; Schoonheydt RA; Sels BF; Solomon EI J Am Chem Soc; 2022 Oct; 144(42):19305-19316. PubMed ID: 36219763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]