These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 34097528)
1. In-Flow dynamics of an area-difference-energy spring-particle red blood cell model on non-uniform grids. Walsh B; Boyle FJ Comput Methods Biomech Biomed Engin; 2022 Jan; 25(1):52-64. PubMed ID: 34097528 [TBL] [Abstract][Full Text] [Related]
2. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. Tsubota K; Wada S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of a single red blood cell in simple shear flow. Sinha K; Graham MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275 [TBL] [Abstract][Full Text] [Related]
4. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717 [TBL] [Abstract][Full Text] [Related]
5. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Yazdani AZ; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097 [TBL] [Abstract][Full Text] [Related]
6. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion. Tsubota K; Wada S; Liu H Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211 [TBL] [Abstract][Full Text] [Related]
7. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading. Malipeddi AR; Sarkar K Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062 [TBL] [Abstract][Full Text] [Related]
8. Swinging and synchronized rotations of red blood cells in simple shear flow. Noguchi H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021902. PubMed ID: 19792146 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulations of deformation and aggregation of red blood cells in shear flow. Low HT; Ju M; Sui Y; Nazir T; Namgung B; Kim S Crit Rev Biomed Eng; 2013; 41(4-5):425-34. PubMed ID: 24941417 [TBL] [Abstract][Full Text] [Related]
10. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Skotheim JM; Secomb TW Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066 [TBL] [Abstract][Full Text] [Related]
11. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow. Levant M; Steinberg V Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369 [TBL] [Abstract][Full Text] [Related]
12. Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity. Guglietta F; Behr M; Biferale L; Falcucci G; Sbragaglia M Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200395. PubMed ID: 34455835 [TBL] [Abstract][Full Text] [Related]
13. A new membrane formulation for modelling the flow of stomatocyte, discocyte, and echinocyte red blood cells. Karandeniya DMW; Holmes DW; Sauret E; Gu YT Biomech Model Mechanobiol; 2022 Jun; 21(3):899-917. PubMed ID: 35412191 [TBL] [Abstract][Full Text] [Related]
14. Multiscale modeling of hemolysis during microfiltration. Nikfar M; Razizadeh M; Paul R; Liu Y Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552 [TBL] [Abstract][Full Text] [Related]
15. An Enhanced Spring-Particle Model for Red Blood Cell Structural Mechanics: Application to the Stomatocyte-Discocyte-Echinocyte Transformation. Chen M; Boyle FJ J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28813551 [TBL] [Abstract][Full Text] [Related]
16. Tank-treading and tumbling frequencies of capsules and red blood cells. Yazdani AZ; Kalluri RM; Bagchi P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293 [TBL] [Abstract][Full Text] [Related]
17. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow. Nakamura M; Bessho S; Wada S Int J Numer Method Biomed Eng; 2013 Jan; 29(1):114-28. PubMed ID: 23293072 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations. Atwell S; Badens C; Charrier A; Helfer E; Viallat A Front Physiol; 2021; 12():775584. PubMed ID: 35069240 [TBL] [Abstract][Full Text] [Related]
19. Swinging of red blood cells under shear flow. Abkarian M; Faivre M; Viallat A Phys Rev Lett; 2007 May; 98(18):188302. PubMed ID: 17501614 [TBL] [Abstract][Full Text] [Related]
20. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method. Tan J; Keller W; Sohrabi S; Yang J; Liu Y Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]