BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34097613)

  • 21. An Embedded, Eight Channel, Noise Canceling, Wireless, Wearable sEMG Data Acquisition System With Adaptive Muscle Contraction Detection.
    Ergeneci M; Gokcesu K; Ertan E; Kosmas P
    IEEE Trans Biomed Circuits Syst; 2018 Feb; 12(1):68-79. PubMed ID: 29377797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a Flexible High-Density Surface Electromyography Sensor.
    Feng J; Chang H; Jeong H; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4130-4133. PubMed ID: 33018907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation.
    Du Y; Jin W; Wei W; Hu Y; Geng W
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28245586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Multi-Day Wearable Surface EMG E-Tattoo for Fatigue Monitoring.
    Huh H; Yang X; Shin H; Lu N
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thin, flexible multielectrode grid for high-density surface EMG.
    Lapatki BG; Van Dijk JP; Jonas IE; Zwarts MJ; Stegeman DF
    J Appl Physiol (1985); 2004 Jan; 96(1):327-36. PubMed ID: 12972436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Novel Screen-Printed Textile Interface for High-Density Electromyography Recording.
    Murciego LP; Komolafe A; Peřinka N; Nunes-Matos H; Junker K; Díez AG; Lanceros-Méndez S; Torah R; Spaich EG; Dosen S
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-density surface electromyography: A visualization method of laryngeal muscle activity.
    Bracken DJ; Ornelas G; Coleman TP; Weissbrod PA
    Laryngoscope; 2019 Oct; 129(10):2347-2353. PubMed ID: 30663053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography.
    Piitulainen H; Botter A; Bourguignon M; Jousmäki V; Hari R
    J Neurophysiol; 2015 Nov; 114(5):2843-53. PubMed ID: 26354317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors.
    Campanini I; Merlo A; Disselhorst-Klug C; Mesin L; Muceli S; Merletti R
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction of the brachialis muscle activity using HD-sEMG technique and canonical correlation analysis.
    Al Harrach M; Afsharipour B; Boudaoud S; Carriou V; Marin F; Merletti R
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2378-2381. PubMed ID: 28268803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. E-textile based modular sEMG suit for large area level of effort analysis.
    Ohiri KA; Pyles CO; Hamilton LH; Baker MM; McGuire MT; Nguyen EQ; Osborn LE; Rossick KM; McDowell EG; Strohsnitter LM; Currano LJ
    Sci Rep; 2022 Jun; 12(1):9650. PubMed ID: 35688946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of Inter-Electrode Distance on the RMS of the SEMG signal.
    Melaku A; Kumar DK; Bradley A
    Electromyogr Clin Neurophysiol; 2001; 41(7):437-42. PubMed ID: 11721300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards the Design of an Impedance-Controlled HD-sEMG Amplifier: A Feasibility Study.
    Cerone GL; Gazzoni M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5773-5776. PubMed ID: 31947164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stretchable and durable HD-sEMG electrodes for accurate recognition of swallowing activities on complex epidermal surfaces.
    Zhang D; Chen Z; Xiao L; Zhu B; Wu R; Ou C; Ma Y; Xie L; Jiang H
    Microsyst Nanoeng; 2023; 9():115. PubMed ID: 37731914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System.
    Lynn SK; Watkins CM; Wong MA; Balfany K; Feeney DF
    J Sports Sci Med; 2018 Jun; 17(2):205-215. PubMed ID: 29769821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Density Surface Electromyogram-based Biometrics for Personal Identification.
    Jiang X; Xu K; Liu X; Liu D; Dai C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():728-731. PubMed ID: 33018090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical modeling and evaluation for textile electrodes to skin.
    Song J; Zhang Y; Yang Y; Liu H; Zhou T; Zhang K; Li F; Xu Z; Liu Q; Li J
    Biomed Eng Online; 2020 May; 19(1):30. PubMed ID: 32393332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-density EMG E-textile systems for the control of active prostheses.
    Farina D; Lorrain T; Negro F; Jiang N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3591-3. PubMed ID: 21096838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel wearable EMG sensors based on nanowire technology.
    Myers A; Lin Du ; He Huang ; Yong Zhu
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1674-7. PubMed ID: 25570296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying Noisy Electrodes in High Density Surface Electromyography Recordings Through Analysis of Spatial Similarities.
    Bingham A; Jelfs B; Arjunan SP; Kumar DK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2325-2328. PubMed ID: 30440872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.