These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34098060)

  • 21. What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance.
    Hamis S; Nithiarasu P; Powathil GG
    J Theor Biol; 2018 Oct; 454():253-267. PubMed ID: 29909142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A theoretical analysis of the scale separation in a model to predict solid tumour growth.
    de Melo Quintela B; Hervas-Raluy S; Garcia-Aznar JM; Walker D; Wertheim KY; Viceconti M
    J Theor Biol; 2022 Aug; 547():111173. PubMed ID: 35644484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of cell-cell interactions in a two-phase model for avascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hybrid computational model for the effects of maspin on cancer cell dynamics.
    Al-Mamun MA; Brown LJ; Hossain MA; Fall C; Wagstaff L; Bass R
    J Theor Biol; 2013 Nov; 337():150-60. PubMed ID: 23988797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multiscale model for avascular tumor growth.
    Jiang Y; Pjesivac-Grbovic J; Cantrell C; Freyer JP
    Biophys J; 2005 Dec; 89(6):3884-94. PubMed ID: 16199495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microenvironmental autophagy promotes tumour growth.
    Katheder NS; Khezri R; O'Farrell F; Schultz SW; Jain A; Rahman MM; Schink KO; Theodossiou TA; Johansen T; Juhász G; Bilder D; Brech A; Stenmark H; Rusten TE
    Nature; 2017 Jan; 541(7637):417-420. PubMed ID: 28077876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model.
    Roy M; Finley SD
    PLoS Comput Biol; 2019 Jun; 15(6):e1007053. PubMed ID: 31185009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity.
    Marusyk A; Tabassum DP; Altrock PM; Almendro V; Michor F; Polyak K
    Nature; 2014 Oct; 514(7520):54-8. PubMed ID: 25079331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Mathematical Model Coupling Tumor Growth and Angiogenesis.
    Xu J; Vilanova G; Gomez H
    PLoS One; 2016; 11(2):e0149422. PubMed ID: 26891163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modelling evolutionary cell behaviour using neural networks: application to tumour growth.
    Gerlee P; Anderson AR
    Biosystems; 2009 Feb; 95(2):166-74. PubMed ID: 19026711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of behaviour transitions in tumour growth using a cellular automaton simulation.
    Santos J; Monteagudo Á
    IET Syst Biol; 2015 Jun; 9(3):75-87. PubMed ID: 26021328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuum versus discrete model: a comparison for multicellular tumour spheroids.
    Schaller G; Meyer-Hermann M
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1443-64. PubMed ID: 16766354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiscale modeling of solid stress and tumor cell invasion in response to dynamic mechanical microenvironment.
    Chen H; Cai Y; Chen Q; Li Z
    Biomech Model Mechanobiol; 2020 Apr; 19(2):577-590. PubMed ID: 31571083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tumour-stromal interactions in acid-mediated invasion: a mathematical model.
    Martin NK; Gaffney EA; Gatenby RA; Maini PK
    J Theor Biol; 2010 Dec; 267(3):461-70. PubMed ID: 20816684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical modelling of the Warburg effect in tumour cords.
    Astanin S; Preziosi L
    J Theor Biol; 2009 Jun; 258(4):578-90. PubMed ID: 19232360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the transport of fluid through heterogeneous, whole tumours in silico.
    Sweeney PW; d'Esposito A; Walker-Samuel S; Shipley RJ
    PLoS Comput Biol; 2019 Jun; 15(6):e1006751. PubMed ID: 31226169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microenvironmental influence on microtumour infiltration patterns: 3D-mathematical modelling supported by in vitro studies.
    Luján E; Soto D; Rosito MS; Soba A; Guerra LN; Calvo JC; Marshall G; Suárez C
    Integr Biol (Camb); 2018 May; 10(5):325-334. PubMed ID: 29741547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth.
    Cho H; Levy D
    J Theor Biol; 2018 Jan; 436():120-134. PubMed ID: 29030212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution and morphology of microenvironment-enhanced malignancy of three-dimensional invasive solid tumors.
    Jiao Y; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052707. PubMed ID: 23767566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. When dormancy fuels tumour relapse.
    Santos-de-Frutos K; Djouder N
    Commun Biol; 2021 Jun; 4(1):747. PubMed ID: 34135460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.