These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 34098073)
1. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Zou T; Lu W; Mezhuev Y; Lan M; Li L; Liu F; Cai T; Wu X; Cai Y Eur J Pharm Biopharm; 2021 Sep; 166():30-43. PubMed ID: 34098073 [TBL] [Abstract][Full Text] [Related]
2. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Lan M; Lu W; Zou T; Li L; Liu F; Cai T; Cai Y Cell Mol Life Sci; 2021 Mar; 78(5):2105-2129. PubMed ID: 33386887 [TBL] [Abstract][Full Text] [Related]
3. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Lu S; Zhang C; Wang J; Zhao L; Li G Biomed Pharmacother; 2024 Jan; 170():116059. PubMed ID: 38154273 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle drug delivery systems responsive to tumor microenvironment: Promising alternatives in the treatment of triple-negative breast cancer. Cao Y; Meng F; Cai T; Gao L; Lee J; Solomevich SO; Aharodnikau UE; Guo T; Lan M; Liu F; Li Q; Viktor T; Li D; Cai Y Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1950. PubMed ID: 38528388 [TBL] [Abstract][Full Text] [Related]
5. Targeting breast cancer through its microenvironment: current status of preclinical and clinical research in finding relevant targets. Nienhuis HH; Gaykema SB; Timmer-Bosscha H; Jalving M; Brouwers AH; Lub-de Hooge MN; van der Vegt B; Overmoyer B; de Vries EG; Schröder CP Pharmacol Ther; 2015 Mar; 147():63-79. PubMed ID: 25444756 [TBL] [Abstract][Full Text] [Related]
6. 3D tumor microtissues as an in vitro testing platform for microenvironmentally-triggered drug delivery systems. Brancato V; Gioiella F; Profeta M; Imparato G; Guarnieri D; Urciuolo F; Melone P; Netti PA Acta Biomater; 2017 Jul; 57():47-58. PubMed ID: 28483691 [TBL] [Abstract][Full Text] [Related]
7. Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Xie F; Wang M; Chen Q; Chi T; Zhu S; Wei P; Yang Y; Zhang L; Li X; Liao Z Pharmacol Res; 2022 Dec; 186():106522. PubMed ID: 36283629 [TBL] [Abstract][Full Text] [Related]
8. Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy. Zhang Y; Cai K; Li C; Guo Q; Chen Q; He X; Liu L; Zhang Y; Lu Y; Chen X; Sun T; Huang Y; Cheng J; Jiang C Nano Lett; 2018 Mar; 18(3):1908-1915. PubMed ID: 29473753 [TBL] [Abstract][Full Text] [Related]
9. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. Naser IH; Zaid M; Ali E; Jabar HI; Mustafa AN; Alubiady MHS; Ramadan MF; Muzammil K; Khalaf RM; Jalal SS; Alawadi AH; Alsalamy A Naunyn Schmiedebergs Arch Pharmacol; 2024 Jun; 397(6):3747-3770. PubMed ID: 38095649 [TBL] [Abstract][Full Text] [Related]
10. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Chen B; Dai W; He B; Zhang H; Wang X; Wang Y; Zhang Q Theranostics; 2017; 7(3):538-558. PubMed ID: 28255348 [TBL] [Abstract][Full Text] [Related]
11. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy. Wang TW; Yeh CW; Kuan CH; Wang LW; Chen LH; Wu HC; Sun JS Acta Biomater; 2017 Aug; 58():54-66. PubMed ID: 28606810 [TBL] [Abstract][Full Text] [Related]
12. Normalizing Tumor Vessels To Increase the Enzyme-Induced Retention and Targeting of Gold Nanoparticle for Breast Cancer Imaging and Treatment. Xiao W; Ruan S; Yu W; Wang R; Hu C; Liu R; Gao H Mol Pharm; 2017 Oct; 14(10):3489-3498. PubMed ID: 28845990 [TBL] [Abstract][Full Text] [Related]
13. Using Properties of Tumor Microenvironments for Controlling Local, On-Demand Delivery from Biopolymer-Based Nanocarriers. Alshememry AK; El-Tokhy SS; Unsworth LD Curr Pharm Des; 2017; 23(35):5358-5391. PubMed ID: 28530543 [TBL] [Abstract][Full Text] [Related]
14. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Mi P Theranostics; 2020; 10(10):4557-4588. PubMed ID: 32292515 [TBL] [Abstract][Full Text] [Related]
15. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231 [TBL] [Abstract][Full Text] [Related]
16. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. Sun H; Li X; Liu Q; Sheng H; Zhu L J Drug Target; 2024 Jul; 32(6):672-706. PubMed ID: 38682299 [TBL] [Abstract][Full Text] [Related]
17. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Liang Y; Wu J; Yan Y; Wang Y; Zhao H; Wang X; Chang S; Li S Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337266 [TBL] [Abstract][Full Text] [Related]
18. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles. Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106 [TBL] [Abstract][Full Text] [Related]
19. Responsive Role of Nanomedicine in the Tumor Microenvironment and Cancer Drug Resistance. Sa P; Sahoo SK; Dilnawaz F Curr Med Chem; 2023; 30(29):3335-3355. PubMed ID: 36154585 [TBL] [Abstract][Full Text] [Related]
20. Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Ovais M; Mukherjee S; Pramanik A; Das D; Mukherjee A; Raza A; Chen C Adv Mater; 2020 Jun; 32(22):e2000055. PubMed ID: 32227413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]