BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34098127)

  • 1. Ultrasonic pre-treatment modifies the pH-dependent molecular interactions between β-lactoglobulin and dietary phenolics: Conformational structures and interfacial properties.
    Zhang Q; Li H; Cen C; Zhang J; Wang S; Wang Y; Fu L
    Ultrason Sonochem; 2021 Jul; 75():105612. PubMed ID: 34098127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison study of the interaction between β-lactoglobulin and retinol at two different conditions: spectroscopic and molecular modeling approaches.
    Khorsand Ahmadi S; Mahmoodian Moghadam M; Mokaberi P; Reza Saberi M; Chamani J
    J Biomol Struct Dyn; 2015 Sep; 33(9):1880-98. PubMed ID: 25402748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards understanding the interaction between ultrasound-pretreated β-lactoglobulin monomer with resveratrol.
    Wang C; Zhao R; Liu J; Wang C
    Luminescence; 2023 Feb; 38(2):116-126. PubMed ID: 36563058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of non-covalent interaction between β-lactoglobulin and hyaluronic acid under ultrasound-assisted treatment: Conformational structures and interfacial properties.
    Song G; Zhou L; Zhao L; Wang D; Yuan T; Li L; Gong J
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128529. PubMed ID: 38042327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Whey Proteins with Phenolic Derivatives Under Neutral and Acidic pH Conditions.
    Cao Y; Xiong YL
    J Food Sci; 2017 Feb; 82(2):409-419. PubMed ID: 28071787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods.
    Jia J; Gao X; Hao M; Tang L
    Food Chem; 2017 Aug; 228():143-151. PubMed ID: 28317707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Reduction in IgG and IgE Binding of β-Lactoglobulin Induced by Ultrasound Pretreatment Combined with Dry-State Glycation: A Study Using Conventional Spectrometry and High-Resolution Mass Spectrometry.
    Yang W; Tu Z; Wang H; Zhang L; Xu S; Niu C; Yao H; Kaltashov IA
    J Agric Food Chem; 2017 Sep; 65(36):8018-8027. PubMed ID: 28800703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-assisted assembly of β-lactoglobulin and chlorogenic acid for non covalent nanocomplex: fabrication, characterization and potential biological function.
    Liu J; Song G; Yuan Y; Zhou L; Wang D; Yuan T; Li L; He G; Yang Q; Xiao G; Gong J
    Ultrason Sonochem; 2022 May; 86():106025. PubMed ID: 35533432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent modification of β-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule.
    Tao F; Xiao C; Chen W; Zhang Y; Pan J; Jia Z
    Int J Biol Macromol; 2019 Apr; 126():1186-1191. PubMed ID: 30615967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles.
    Li B; Du W; Jin J; Du Q
    J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis.
    Zhang L; Wang Y; Xu M; Hu X
    Food Chem; 2017 Dec; 237():39-45. PubMed ID: 28764011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions.
    Qie X; Chen Y; Quan W; Wang Z; Zeng M; Qin F; Chen J; He Z
    Food Funct; 2020 May; 11(5):3867-3878. PubMed ID: 32426776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in binding behavior of (-)-epigallocatechin gallate to β-lactoglobulin heterodimers (AB) compared to homodimers (A) and (B).
    Keppler JK; Martin D; Garamus VM; Schwarz K
    J Mol Recognit; 2015 Nov; 28(11):656-66. PubMed ID: 26038095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods.
    Kuang X; Deng Z; Feng B; He R; Chen L; Liang G
    Int J Biol Macromol; 2024 May; 268(Pt 1):131773. PubMed ID: 38657930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat treatment of beta-lactoglobulin: structural changes studied by partitioning and fluorescence.
    Palazolo G; Rodríguez F; Farruggia B; Picó G; Delorenzi N
    J Agric Food Chem; 2000 Sep; 48(9):3817-22. PubMed ID: 10995276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin.
    Zhang L; Sahu ID; Xu M; Wang Y; Hu X
    Food Chem; 2017 Apr; 221():1923-1929. PubMed ID: 27979181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Investigations on the Synergistic Binding Mechanism of Functional Compounds with Beta-Lactoglobulin.
    Meng T; Wang Z; Zhang H; Zhao Z; Huang W; Xu L; Liu M; Li J; Yan H
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes.
    Lestringant P; Guri A; Gülseren I; Relkin P; Corredig M
    J Agric Food Chem; 2014 Aug; 62(33):8357-64. PubMed ID: 25077960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes of beta-lactoglobulin induced by anionic phospholipid.
    Liu X; Shang L; Jiang X; Dong S; Wang E
    Biophys Chem; 2006 Jun; 121(3):218-23. PubMed ID: 16494994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation of bovine beta-lactoglobulin with 11S protein fractions of soybean (Glycine max) and sesame (Sesamum indicum).
    Anuradha SN; Prakash V
    Int J Food Sci Nutr; 2009; 60 Suppl 1():27-42. PubMed ID: 19330636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.