These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34098323)

  • 1. A review of the hexapod tracheal system with a focus on the apterygote groups.
    Dittrich K; Wipfler B
    Arthropod Struct Dev; 2021 Jul; 63():101072. PubMed ID: 34098323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha.
    Sasaki G; Ishiwata K; Machida R; Miyata T; Su ZH
    BMC Evol Biol; 2013 Oct; 13():236. PubMed ID: 24176097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of neuropeptides in non-pterygote hexapods.
    Derst C; Dircksen H; Meusemann K; Zhou X; Liu S; Predel R
    BMC Evol Biol; 2016 Feb; 16():51. PubMed ID: 26923142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalogue of the type material in the entomological collection of the Natural History Museum of Denmark: basal hexapods.
    EusÉbio R; Sendra A; Enghoff H; Reboleira ASPS
    Zootaxa; 2018 Aug; 4457(2):201-236. PubMed ID: 30314167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phylogenetic positions of three Basal-hexapod groups (protura, diplura, and collembola) based on ribosomal RNA gene sequences.
    Luan YX; Mallatt JM; Xie RD; Yang YM; Yin WY
    Mol Biol Evol; 2005 Jul; 22(7):1579-92. PubMed ID: 15845456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 400 million years on six legs: on the origin and early evolution of Hexapoda.
    Grimaldi DA
    Arthropod Struct Dev; 2010; 39(2-3):191-203. PubMed ID: 19883792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The occurrence of hemocyanin in Hexapoda.
    Pick C; Schneuer M; Burmester T
    FEBS J; 2009 Apr; 276(7):1930-41. PubMed ID: 19236479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Handling and Use of Oxygen by Pancrustaceans: Conserved Patterns and the Evolution of Respiratory Structures.
    Harrison JF
    Integr Comp Biol; 2015 Nov; 55(5):802-15. PubMed ID: 26002563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences.
    Gao Y; Bu Y; Luan YX
    Zoolog Sci; 2008 Nov; 25(11):1139-45. PubMed ID: 19267625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Papers and New Species of Minor Insect Orders Published in Zootaxa, 20012020.
    Bernard EC; Whittington AE
    Zootaxa; 2021 May; 4979(1):232235. PubMed ID: 34186997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of insect biodiversity.
    Tihelka E; Cai C; Giacomelli M; Lozano-Fernandez J; Rota-Stabelli O; Huang D; Engel MS; Donoghue PCJ; Pisani D
    Curr Biol; 2021 Oct; 31(19):R1299-R1311. PubMed ID: 34637741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the first neuropeptides from the enigmatic hexapod order Protura.
    Christie AE; Chi M
    Gen Comp Endocrinol; 2015 Dec; 224():18-37. PubMed ID: 26055220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Going Deeper into High and Low Phylogenetic Relationships of Protura.
    Carapelli A; Bu Y; Chen WJ; Nardi F; Leo C; Frati F; Luan YX
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30974866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an 18S phylogeny of hexapods: accounting for group-specific character covariance in optimized mixed nucleotide/doublet models.
    Misof B; Niehuis O; Bischoff I; Rickert A; Erpenbeck D; Staniczek A
    Zoology (Jena); 2007; 110(5):409-29. PubMed ID: 17964130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spermiogenic chromatin condensation patterning in several hexapods may involve phase separation dynamics by spinodal decomposition or microemulsion inversion (nucleation).
    Kasinsky HE; Gowen BE; Ausió J
    Tissue Cell; 2021 Dec; 73():101648. PubMed ID: 34537592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae).
    Schaeper ND; Wimmer EA; Prpic NM
    Dev Genes Evol; 2013 Nov; 223(6):341-50. PubMed ID: 23873479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary implications of dipluran hexamerins.
    Xie W; Luan YX
    Insect Biochem Mol Biol; 2014 Mar; 46():17-24. PubMed ID: 24462816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations.
    Manni M; Simao FA; Robertson HM; Gabaglio MA; Waterhouse RM; Misof B; Niehuis O; Szucsich NU; Zdobnov EM
    Genome Biol Evol; 2020 Jan; 12(1):3534-3549. PubMed ID: 31778187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A putative hexamerin from a Campodea sp. suggests an independent origin of haemocyanin-related storage proteins in Hexapoda.
    Pick C; Burmester T
    Insect Mol Biol; 2009 Oct; 18(5):673-9. PubMed ID: 19754744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic analyses suggest that diversification and body size evolution are independent in insects.
    Rainford JL; Hofreiter M; Mayhew PJ
    BMC Evol Biol; 2016 Jan; 16():8. PubMed ID: 26746988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.