These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34098541)

  • 1. Thermoelectric properties of armchair phosphorene nanoribbons in the presence of vacancy-induced impurity band.
    Rezaei M; Karbaschi H; Amini M; Soltani M; Rashedi G
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34098541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Electronic Properties of Lateral Monolayer Transition Metal Dichalcogenide Superlattice Nanoribbons.
    Wang J; Srivastava GP
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.
    Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V
    ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface design of the thermoelectric transport properties of phosphorene-tetrathiafulvalene nanoscale devices.
    Qiu Y; Zhang B
    Phys Chem Chem Phys; 2023 Oct; 25(40):27448-27456. PubMed ID: 37796158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large enhancement of thermoelectric performance in MoS
    Wu J; Liu Y; Liu Y; Cai Y; Zhao Y; Ng HK; Watanabe K; Taniguchi T; Zhang G; Qiu CW; Chi D; Neto AHC; Thong JTL; Loh KP; Hippalgaonkar K
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13929-13936. PubMed ID: 32522877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic bias dependent transport property of defective phosphorene layer.
    Umar Farooq M; Hashmi A; Hong J
    Sci Rep; 2015 Jul; 5():12482. PubMed ID: 26198318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.
    Guo C; Wang T; Xia C; Liu Y
    Sci Rep; 2017 Oct; 7(1):12799. PubMed ID: 28993688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of vacancy and heteroatoms-doping on the stability, electronic and magnetic properties of blue phosphorene.
    Chen J; Wang Z; Dai X; Xiao J; Long M; Xu L
    Nanotechnology; 2021 Mar; 32(13):135702. PubMed ID: 33296873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption.
    Rao YC; Zhang P; Li SF; Duan XM; Wei SH
    Phys Chem Chem Phys; 2018 May; 20(18):12916-12922. PubMed ID: 29701208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of metallic electrodes on the thermoelectric properties of zigzag graphene nanoribbons with periodic vacancies.
    Kuo DMT
    J Phys Condens Matter; 2023 Apr; 35(30):. PubMed ID: 37068484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Armchair graphene nanoribbons with giant spin thermoelectric efficiency.
    Shirdel-Havar M; Farghadan R
    Phys Chem Chem Phys; 2018 Jun; 20(24):16853-16860. PubMed ID: 29892735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-edged bilayer phosphorene nanoribbons producing from collapsing armchair phosphorene nanotubes.
    Liao X; Xiao H; Lu X; Chen Y; Shi X; Chen X
    Nanotechnology; 2018 Feb; 29(8):085707. PubMed ID: 29300176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study.
    Wang Y; Ding Y
    Nanoscale Res Lett; 2015 Dec; 10(1):955. PubMed ID: 26058516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning phononic and electronic contributions of thermoelectric in defected S-shape graphene nanoribbons.
    Bazrafshan MA; Khoeini F
    Sci Rep; 2022 Nov; 12(1):18419. PubMed ID: 36319726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.