BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34099168)

  • 21. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.
    Shen H; Zhou Q; Pan X; Li Z; Wu J; Yan N
    Science; 2017 Mar; 355(6328):. PubMed ID: 28183995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative proteomics reveals protein-protein interactions with fibroblast growth factor 12 as a component of the voltage-gated sodium channel 1.2 (nav1.2) macromolecular complex in Mammalian brain.
    Wildburger NC; Ali SR; Hsu WC; Shavkunov AS; Nenov MN; Lichti CF; LeDuc RD; Mostovenko E; Panova-Elektronova NI; Emmett MR; Nilsson CL; Laezza F
    Mol Cell Proteomics; 2015 May; 14(5):1288-300. PubMed ID: 25724910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Backbone resonance assignments of complexes of apo human calmodulin bound to IQ motif peptides of voltage-dependent sodium channels Na
    Isbell HM; Kilpatrick AM; Lin Z; Mahling R; Shea MA
    Biomol NMR Assign; 2018 Oct; 12(2):283-289. PubMed ID: 29728980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane trauma and Na+ leak from Nav1.6 channels.
    Wang JA; Lin W; Morris T; Banderali U; Juranka PF; Morris CE
    Am J Physiol Cell Physiol; 2009 Oct; 297(4):C823-34. PubMed ID: 19657055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-Molecule Imaging of Nav1.6 on the Surface of Hippocampal Neurons Reveals Somatic Nanoclusters.
    Akin EJ; Solé L; Johnson B; Beheiry ME; Masson JB; Krapf D; Tamkun MM
    Biophys J; 2016 Sep; 111(6):1235-1247. PubMed ID: 27653482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav1.7, Species Differences, and Regulation by Paclitaxel.
    Chang W; Berta T; Kim YH; Lee S; Lee SY; Ji RR
    Neurosci Bull; 2018 Feb; 34(1):4-12. PubMed ID: 28424991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of cough and action potentials by voltage-gated Na channels.
    Carr MJ
    Pulm Pharmacol Ther; 2013 Oct; 26(5):508-9. PubMed ID: 23850655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ca
    Hanemaaijer NA; Popovic MA; Wilders X; Grasman S; Pavón Arocas O; Kole MH
    Elife; 2020 Jun; 9():. PubMed ID: 32553116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.
    Zhang H; Zou B; Du F; Xu K; Li M
    Mol Pharmacol; 2015 Feb; 87(2):207-17. PubMed ID: 25422141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Pain and analgesia : Mutations of voltage-gated sodium channels].
    Eberhardt MJ; Leffler A
    Schmerz; 2017 Feb; 31(1):14-22. PubMed ID: 27402262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural mapping of Na
    Wu Q; Huang J; Fan X; Wang K; Jin X; Huang G; Li J; Pan X; Yan N
    Nat Commun; 2023 Jun; 14(1):3224. PubMed ID: 37270609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calmodulin and Ca(2+) control of voltage gated Na(+) channels.
    Gabelli SB; Yoder JB; Tomaselli GF; Amzel LM
    Channels (Austin); 2016; 10(1):45-54. PubMed ID: 26218606
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents.
    Liu XP; Wooltorton JR; Gaboyard-Niay S; Yang FC; Lysakowski A; Eatock RA
    J Neurophysiol; 2016 May; 115(5):2536-55. PubMed ID: 26936982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C.
    Aromolaran AS; Chahine M; Boutjdir M
    Handb Exp Pharmacol; 2018; 246():161-184. PubMed ID: 29032483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics.
    Stoetzer C; Doll T; Stueber T; Herzog C; Echtermeyer F; Greulich F; Rudat C; Kispert A; Wegner F; Leffler A
    Naunyn Schmiedebergs Arch Pharmacol; 2016 Jun; 389(6):625-36. PubMed ID: 27000037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel.
    Wisedchaisri G; Tonggu L; McCord E; Gamal El-Din TM; Wang L; Zheng N; Catterall WA
    Cell; 2019 Aug; 178(4):993-1003.e12. PubMed ID: 31353218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variable patterns of mutation density among NaV1.1, NaV1.2 and NaV1.6 point to channel-specific functional differences associated with childhood epilepsy.
    Encinas AC; Watkins JC; Longoria IA; Johnson JP; Hammer MF
    PLoS One; 2020; 15(8):e0238121. PubMed ID: 32845893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development.
    Akin EJ; Solé L; Dib-Hajj SD; Waxman SG; Tamkun MM
    PLoS One; 2015; 10(4):e0124397. PubMed ID: 25874799
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.