These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 34099691)

  • 1. Self-sustained green neuromorphic interfaces.
    Fu T; Liu X; Fu S; Woodard T; Gao H; Lovley DR; Yao J
    Nat Commun; 2021 Jun; 12(1):3351. PubMed ID: 34099691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired bio-voltage memristors.
    Fu T; Liu X; Gao H; Ward JE; Liu X; Yin B; Wang Z; Zhuo Y; Walker DJF; Joshua Yang J; Chen J; Lovley DR; Yao J
    Nat Commun; 2020 Apr; 11(1):1861. PubMed ID: 32313096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions.
    Lovley DR; Yao J
    Trends Biotechnol; 2021 Sep; 39(9):940-952. PubMed ID: 33419586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities.
    Milano G; Luebben M; Ma Z; Dunin-Borkowski R; Boarino L; Pirri CF; Waser R; Ricciardi C; Valov I
    Nat Commun; 2018 Dec; 9(1):5151. PubMed ID: 30514894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics.
    Long YZ; Yu M; Sun B; Gu CZ; Fan Z
    Chem Soc Rev; 2012 Jun; 41(12):4560-80. PubMed ID: 22573265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of nanoscale memristor synapses in neuromorphic computing architectures.
    Indiveri G; Linares-Barranco B; Legenstein R; Deligeorgis G; Prodromakis T
    Nanotechnology; 2013 Sep; 24(38):384010. PubMed ID: 23999381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromorphic nanoelectronic materials.
    Sangwan VK; Hersam MC
    Nat Nanotechnol; 2020 Jul; 15(7):517-528. PubMed ID: 32123381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CrossNets: high-performance neuromorphic architectures for CMOL circuits.
    Likharev K; Mayr A; Muckra I; Türel O
    Ann N Y Acad Sci; 2003 Dec; 1006():146-63. PubMed ID: 14976016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale memristor device as synapse in neuromorphic systems.
    Jo SH; Chang T; Ebong I; Bhadviya BB; Mazumder P; Lu W
    Nano Lett; 2010 Apr; 10(4):1297-301. PubMed ID: 20192230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges.
    Tang J; Yuan F; Shen X; Wang Z; Rao M; He Y; Sun Y; Li X; Zhang W; Li Y; Gao B; Qian H; Bi G; Song S; Yang JJ; Wu H
    Adv Mater; 2019 Dec; 31(49):e1902761. PubMed ID: 31550405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics.
    Krauhausen I; Griggs S; McCulloch I; den Toonder JMJ; Gkoupidenis P; van de Burgt Y
    Nat Commun; 2024 Jun; 15(1):4765. PubMed ID: 38834541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memristor crossbar-based neuromorphic computing system: a case study.
    Hu M; Li H; Chen Y; Wu Q; Rose GS; Linderman RW
    IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1864-78. PubMed ID: 25291739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.
    Park S; Noh J; Choo ML; Sheri AM; Chang M; Kim YB; Kim CJ; Jeon M; Lee BG; Lee BH; Hwang H
    Nanotechnology; 2013 Sep; 24(38):384009. PubMed ID: 23999317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroforming in Metal-Oxide Memristive Synapses.
    Wang T; Shi Y; Puglisi FM; Chen S; Zhu K; Zuo Y; Li X; Jing X; Han T; Guo B; Bukvišová K; Kachtík L; Kolíbal M; Wen C; Lanza M
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11806-11814. PubMed ID: 32036650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoenhanced Patterning of Metal Nanowire Networks for Fabrication of Ultraflexible Transparent Devices.
    Song CH; Han CJ; Ju BK; Kim JW
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):480-9. PubMed ID: 26690092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Analog Memristive Synapse with Atomic-Scale Conductive Filament for Flexible Neuromorphic Computing System.
    Jang BC; Kim S; Yang SY; Park J; Cha JH; Oh J; Choi J; Im SG; Dravid VP; Choi SY
    Nano Lett; 2019 Feb; 19(2):839-849. PubMed ID: 30608706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.