These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34100134)
21. Application of novel hybrid machine learning systems and radiomics features for non-motor outcome prediction in Parkinson's disease. Salmanpour MR; Bakhtiyari M; Hosseinzadeh M; Maghsudi M; Yousefirizi F; Ghaemi MM; Rahmim A Phys Med Biol; 2023 Jan; 68(3):. PubMed ID: 36595257 [No Abstract] [Full Text] [Related]
23. Serum NFL levels predict progression of motor impairment and reduction in putamen dopamine transporter binding ratios in de novo Parkinson's disease: An 8-year longitudinal study. Ye R; Locascio JJ; Goodheart AE; Quan M; Zhang B; Gomperts SN Parkinsonism Relat Disord; 2021 Apr; 85():11-16. PubMed ID: 33639572 [TBL] [Abstract][Full Text] [Related]
24. Associations of striatal dopamine transporter binding with motor and non-motor symptoms in early Parkinson's disease. Yang Z; Xie Y; Dou K; Yang L; Xie A Clin Transl Sci; 2023 Jun; 16(6):1021-1038. PubMed ID: 36915231 [TBL] [Abstract][Full Text] [Related]
25. Motor Progression in Early-Stage Parkinson's Disease: A Clinical Prediction Model and the Role of Cerebrospinal Fluid Biomarkers. Ma LY; Tian Y; Pan CR; Chen ZL; Ling Y; Ren K; Li JS; Feng T Front Aging Neurosci; 2020; 12():627199. PubMed ID: 33568988 [No Abstract] [Full Text] [Related]
26. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Simuni T; Uribe L; Cho HR; Caspell-Garcia C; Coffey CS; Siderowf A; Trojanowski JQ; Shaw LM; Seibyl J; Singleton A; Toga AW; Galasko D; Foroud T; Tosun D; Poston K; Weintraub D; Mollenhauer B; Tanner CM; Kieburtz K; Chahine LM; Reimer A; Hutten SJ; Bressman S; Marek K; Lancet Neurol; 2020 Jan; 19(1):71-80. PubMed ID: 31678032 [TBL] [Abstract][Full Text] [Related]
28. Motor progression phenotypes in early-stage Parkinson's Disease: A clinical prediction model and the role of glymphatic system imaging biomarkers. He P; Gao Y; Shi L; Li Y; Jiang S; Tie Z; Qiu Y; Ma G; Zhang Y; Nie K; Wang L Neurosci Lett; 2023 Sep; 814():137435. PubMed ID: 37562710 [TBL] [Abstract][Full Text] [Related]
29. Constipation is not associated with dopamine transporter pathology in early drug-naïve patients with Parkinson's disease. Pagano G; Yousaf T; Wilson H; Niccolini F; Polychronis S; Chaudhuri KR; Politis M Eur J Neurol; 2018 Feb; 25(2):307-312. PubMed ID: 29078029 [TBL] [Abstract][Full Text] [Related]
30. Radiomics score derived from T1-w/T2-w ratio image can predict motor symptom progression in Parkinson's disease. Shimozono T; Shiiba T; Takano K Eur Radiol; 2024 Dec; 34(12):7921-7933. PubMed ID: 38958697 [TBL] [Abstract][Full Text] [Related]
31. Effective and efficient diagnosis of parkinsonism: the role of dopamine transporter SPECT imaging with ioflupane I-123 injection (DaTscan™). Cummings JL; Fine MJ; Grachev ID; Jarecke CR; Johnson MK; Kuo PH; Schaecher KL; Oberdorf JA; Rezak M; Riley DE; Truong D Am J Manag Care; 2014 Mar; 20(5 Suppl):S97-109. PubMed ID: 24773455 [TBL] [Abstract][Full Text] [Related]
32. Parkinson's Disease Recognition Using Decorrelated Convolutional Neural Networks: Addressing Imbalance and Scanner Bias in rs-fMRI Data. Patil P; Ford WR Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785733 [TBL] [Abstract][Full Text] [Related]
33. Machine learning for predicting cognitive decline within five years in Parkinson's disease: Comparing cognitive assessment scales with DAT SPECT and clinical biomarkers. Gorji A; Fathi Jouzdani A PLoS One; 2024; 19(7):e0304355. PubMed ID: 39018311 [TBL] [Abstract][Full Text] [Related]
34. Longitudinal clustering analysis and prediction of Parkinson's disease progression using radiomics and hybrid machine learning. Salmanpour MR; Shamsaei M; Hajianfar G; Soltanian-Zadeh H; Rahmim A Quant Imaging Med Surg; 2022 Feb; 12(2):906-919. PubMed ID: 35111593 [TBL] [Abstract][Full Text] [Related]
35. Progressive loss of raphe nuclei serotonin transporter in early Parkinson's disease: A longitudinal Pasquini J; Ceravolo R; Brooks DJ; Bonuccelli U; Pavese N Parkinsonism Relat Disord; 2020 Aug; 77():170-175. PubMed ID: 30981664 [TBL] [Abstract][Full Text] [Related]
36. Neuroimaging uncovers distinct relationships of glymphatic dysfunction and motor symptoms in Parkinson's disease. Qin Y; He R; Chen J; Zhou X; Zhou X; Liu Z; Xu Q; Guo JF; Yan XX; Jiang N; Liao W; Taoka T; Wang D; Tang B J Neurol; 2023 May; 270(5):2649-2658. PubMed ID: 36856846 [TBL] [Abstract][Full Text] [Related]
37. Dopamine transporter SPECT imaging in Parkinson's disease and atypical Parkinsonism: a study of 137 patients. Constantinides VC; Souvatzoglou M; Paraskevas GP; Chalioti M; Stefanis L; Kapaki E Neurol Sci; 2023 May; 44(5):1613-1623. PubMed ID: 36658411 [TBL] [Abstract][Full Text] [Related]
38. Multimodal radiotherapy dose prediction using a multi-task deep learning model. Maniscalco A; Mathew E; Parsons D; Visak J; Arbab M; Alluri P; Li X; Wandrey N; Lin MH; Rahimi A; Jiang S; Nguyen D Med Phys; 2024 Jun; 51(6):3932-3949. PubMed ID: 38710210 [TBL] [Abstract][Full Text] [Related]
39. Ensemble learning and personalized training for the improvement of unsupervised deep learning-based synthetic CT reconstruction. Olberg S; Choi BS; Park I; Liang X; Kim JS; Deng J; Yan Y; Jiang S; Park JC Med Phys; 2023 Mar; 50(3):1436-1449. PubMed ID: 36336718 [TBL] [Abstract][Full Text] [Related]
40. Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson's disease. Junaid M; Ali S; Eid F; El-Sappagh S; Abuhmed T Comput Methods Programs Biomed; 2023 Jun; 234():107495. PubMed ID: 37003039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]