BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34100469)

  • 21. Effect of the dietary delivery matrix on vitamin D3 bioavailability and bone mineralisation in vitamin-D3-deficient growing male rats.
    Hodgkinson AJ; Wallace OAM; Kruger MC; Prosser CG
    Br J Nutr; 2018 Jan; 119(2):143-152. PubMed ID: 29268806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3.
    Luo Y; Teng Z; Wang Q
    J Agric Food Chem; 2012 Jan; 60(3):836-43. PubMed ID: 22224939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review: Milk Proteins as Nanocarrier Systems for Hydrophobic Nutraceuticals.
    Kimpel F; Schmitt JJ
    J Food Sci; 2015 Nov; 80(11):R2361-6. PubMed ID: 26467442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of vitamins A and D
    Loewen A; Chan B; Li-Chan ECY
    Food Chem; 2018 Feb; 240():472-481. PubMed ID: 28946300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free and nanoencapsulated vitamin D3 : effects on E-NTPDase and E-ADA activities in an animal model with induced arthritis.
    da Silveira KL; da Silveira LL; Thorstenberg ML; Cabral FL; Castilhos LG; Rezer JF; de Andrade DF; Beck RC; Einloft Palma H; de Andrade CM; Pereira Rda S; Martins NM; Bertonchel Dos Santos Cde M; Leal DB
    Cell Biochem Funct; 2016 Jun; 34(4):262-73. PubMed ID: 27102374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements.
    Chitchumroonchokchai C; Failla ML
    Food Res Int; 2017 Sep; 99(Pt 2):936-943. PubMed ID: 28847430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vitamin D
    Asfour MH; Abd El-Alim SH; Kassem AA; Salama A; Gouda AS; Nazim WS; Nashaat NH; Hemimi M; Abdel Meguid N
    AAPS PharmSciTech; 2023 Feb; 24(2):58. PubMed ID: 36759398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticles based on hydrophobic alginate derivative as nutraceutical delivery vehicle: vitamin D3 loading.
    Sun F; Ju C; Chen J; Liu S; Liu N; Wang K; Liu C
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Feb; 40(1-2):113-9. PubMed ID: 21806504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a validated UPLC method for simultaneous estimation of both free and entrapped (in solid lipid nanoparticles) all-trans retinoic acid and cholecalciferol (vitamin D3) and its pharmacokinetic applicability in rats.
    Kumar M; Sharma G; Singla D; Singh S; Sahwney S; Chauhan AS; Singh G; Kaur IP
    J Pharm Biomed Anal; 2014 Mar; 91():73-80. PubMed ID: 24440824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Evaluation of Intestinal Absorption and Functional Value of Iron Dietary Supplements and Drug with Different Delivery Systems.
    Pastore P; Roverso M; Tedesco E; Micheletto M; Mantovan E; Zanella M; Benetti F
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33348818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytosterols can impair vitamin D intestinal absorption in vitro and in mice.
    Goncalves A; Gleize B; Bott R; Nowicki M; Amiot MJ; Lairon D; Borel P; Reboul E
    Mol Nutr Food Res; 2011 Sep; 55 Suppl 2():S303-11. PubMed ID: 21714122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements.
    Zheng B; Peng S; Zhang X; McClements DJ
    J Agric Food Chem; 2018 Oct; 66(41):10816-10826. PubMed ID: 30252460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro screening of relative bioaccessibility of carotenoids from foods.
    Failla ML; Huo T; Thakkar SK
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():200-3. PubMed ID: 18296337
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility.
    Ozturk B; Argin S; Ozilgen M; McClements DJ
    Food Chem; 2015 Nov; 187():499-506. PubMed ID: 25977056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitamin D
    Aye Cho TZ; Sadiq MB; Srichana P; Anal AK
    Poult Sci; 2020 Apr; 99(4):2041-2047. PubMed ID: 32241489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphiphilic chitosan derivative-based core-shell micelles: synthesis, characterisation and properties for sustained release of Vitamin D3.
    Li W; Peng H; Ning F; Yao L; Luo M; Zhao Q; Zhu X; Xiong H
    Food Chem; 2014; 152():307-15. PubMed ID: 24444942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of dietary vitamin D
    Wu C; Lu B; Wang Y; Jin C; Zhang Y; Ye J
    Fish Physiol Biochem; 2020 Dec; 46(6):2243-2256. PubMed ID: 32945979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Food-Grade Titanium Dioxide Particles Decreased the Bioaccessibility of Vitamin D
    Li C; Zhang R; Ma C; Shang H; McClements DJ; White JC; Xing B
    J Agric Food Chem; 2021 Mar; 69(9):2855-2863. PubMed ID: 33625220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation.
    Fayyazbakhsh F; Solati-Hashjin M; Keshtkar A; Shokrgozar MA; Dehghan MM; Larijani B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():697-708. PubMed ID: 28778053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of mono- and di-glycerides/phospholipids (MDG/PL) on the bioaccessibility of lipophilic nutrients in a protein-based emulsion system.
    Zhang Y; Yang Y; Mao Y; Zhao Y; Li X; Hu J; Li Y
    Food Funct; 2022 Aug; 13(15):8168-8178. PubMed ID: 35822541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.