These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 34100588)

  • 1. Combining Metabolic and Monoterpene Synthase Engineering for
    Lei D; Qiu Z; Wu J; Qiao B; Qiao J; Zhao GR
    ACS Synth Biol; 2021 Jun; 10(6):1531-1544. PubMed ID: 34100588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of nerol from glucose in the metabolic engineered Escherichia coli.
    Zong Z; Hua Q; Tong X; Li D; Wang C; Guo D; Liu Z
    Bioresour Technol; 2019 Sep; 287():121410. PubMed ID: 31076292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nudix hydrolase WvNUDX24 is involved in borneol biosynthesis in Wurfbainia villosa.
    Yang P; Chen YX; Wang TT; Huang XS; Zhan RT; Yang JF; Ma DM
    Plant J; 2024 May; 118(4):1218-1231. PubMed ID: 38323895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of a novel monoterpene synthase from soybean restricted to neryl diphosphate precursor.
    Zhang M; Liu J; Li K; Yu D
    PLoS One; 2013; 8(10):e75972. PubMed ID: 24124526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Optimization of Limonene Production in Engineered Escherichia coli.
    Wu J; Cheng S; Cao J; Qiao J; Zhao GR
    J Agric Food Chem; 2019 Jun; 67(25):7087-7097. PubMed ID: 31199132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Characterization of a Nerol Synthase in Fungi.
    Li R; Yao B; Zeng H
    J Agric Food Chem; 2024 Jan; 72(1):416-423. PubMed ID: 38156892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.
    Hurd MC; Kwon M; Ro DK
    Biochem Biophys Res Commun; 2017 Aug; 490(3):963-968. PubMed ID: 28655616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and Functional Evaluation of Designer Monoterpene Synthases.
    Srividya N; Lange I; Lange BM
    Methods Enzymol; 2016; 576():147-65. PubMed ID: 27480686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Protein and Organelle Engineering for Linalool Overproduction in
    Zhou P; Zhou X; Yuan D; Fang X; Pang X; Yuan K; Li A; Wang X
    J Agric Food Chem; 2023 Jul; 71(26):10133-10143. PubMed ID: 37350414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate.
    Ignea C; Raadam MH; Motawia MS; Makris AM; Vickers CE; Kampranis SC
    Nat Commun; 2019 Aug; 10(1):3799. PubMed ID: 31444322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, functional characterization and evaluating potential in metabolic engineering for lavender ( +)-bornyl diphosphate synthase.
    Adal AM; Najafianashrafi E; Sarker LS; Mahmoud SS
    Plant Mol Biol; 2023 Jan; 111(1-2):117-130. PubMed ID: 36271988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.
    Despinasse Y; Fiorucci S; Antonczak S; Moja S; Bony A; Nicolè F; Baudino S; Magnard JL; Jullien F
    Phytochemistry; 2017 May; 137():24-33. PubMed ID: 28190677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo biosynthesis of linalool from glucose in engineered Escherichia coli.
    Kong S; Fu X; Li X; Pan H; Guo D
    Enzyme Microb Technol; 2020 Oct; 140():109614. PubMed ID: 32912678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Escherichia coli for production of geraniol by systematic synthetic biology approaches and laboratory-evolved fusion tags.
    Wang X; Chen J; Zhang J; Zhou Y; Zhang Y; Wang F; Li X
    Metab Eng; 2021 Jul; 66():60-67. PubMed ID: 33865982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli.
    Gomes D; Rodrigues JL; Rodrigues LR
    Appl Microbiol Biotechnol; 2024 Aug; 108(1):435. PubMed ID: 39126431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering for the high-yield production of isoprenoid-based C₅ alcohols in E. coli.
    George KW; Thompson MG; Kang A; Baidoo E; Wang G; Chan LJ; Adams PD; Petzold CJ; Keasling JD; Lee TS
    Sci Rep; 2015 Jun; 5():11128. PubMed ID: 26052683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids.
    Bracalente F; Sabatini M; Arabolaza A; Gramajo H
    Microb Cell Fact; 2022 Jan; 21(1):10. PubMed ID: 35033081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Biosynthesis of
    Wang X; Wu J; Chen J; Xiao L; Zhang Y; Wang F; Li X
    J Agric Food Chem; 2020 Aug; 68(31):8381-8390. PubMed ID: 32657129
    [No Abstract]   [Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.