These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34100605)

  • 1. Accelerating Metadynamics-Based Free-Energy Calculations with Adaptive Machine Learning Potentials.
    Xu J; Cao XM; Hu P
    J Chem Theory Comput; 2021 Jul; 17(7):4465-4476. PubMed ID: 34100605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study.
    Siddiqui GA; Stebani JA; Wragg D; Koutsourelakis PS; Casini A; Gagliardi A
    Chemistry; 2023 Nov; 29(62):e202302375. PubMed ID: 37555841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab Initio Calculations of Free Energy of Activation at Multiple Electronic Structure Levels Made Affordable: An Effective Combination of Perturbation Theory and Machine Learning.
    Bučko T; Gešvandtnerová M; Rocca D
    J Chem Theory Comput; 2020 Oct; 16(10):6049-6060. PubMed ID: 32786917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.
    Fleming KL; Tiwary P; Pfaendtner J
    J Phys Chem A; 2016 Jan; 120(2):299-305. PubMed ID: 26690335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An efficient strategy to estimate thermodynamics and kinetics of G protein-coupled receptor activation using metadynamics and maximum caliber.
    Meral D; Provasi D; Filizola M
    J Chem Phys; 2018 Dec; 149(22):224101. PubMed ID: 30553249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of free energy surfaces calculations from ab initio molecular dynamic simulations at the example of two transition metal catalyzed reactions.
    Brüssel M; di Dio PJ; Muñiz K; Kirchner B
    Int J Mol Sci; 2011 Feb; 12(2):1389-409. PubMed ID: 21541065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GPU-Enhanced DFTB Metadynamics for Efficiently Predicting Free Energies of Biochemical Systems.
    Kumar A; Arantes PR; Saha A; Palermo G; Wong BM
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling free energy surfaces as slices by combining umbrella sampling and metadynamics.
    Awasthi S; Kapil V; Nair NN
    J Comput Chem; 2016 Jun; 37(16):1413-24. PubMed ID: 27059305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning potential construction based on radial distribution function sampling.
    Watanabe N; Hori Y; Sugisawa H; Ida T; Shoji M; Shigeta Y
    J Comput Chem; 2024 Dec; 45(32):2949-2958. PubMed ID: 39225311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning of Reactive Potentials.
    Yang Y; Zhang S; Ranasinghe KD; Isayev O; Roitberg AE
    Annu Rev Phys Chem; 2024 Jun; 75(1):371-395. PubMed ID: 38941524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biasing Smarter, Not Harder, by Partitioning Collective Variables into Families in Parallel Bias Metadynamics.
    Prakash A; Fu CD; Bonomi M; Pfaendtner J
    J Chem Theory Comput; 2018 Oct; 14(10):4985-4990. PubMed ID: 30075630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The liquid-liquid transition in supercooled ST2 water: a comparison between umbrella sampling and well-tempered metadynamics.
    Palmer JC; Car R; Debenedetti PG
    Faraday Discuss; 2013; 167():77-94. PubMed ID: 24640486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction dynamics of Diels-Alder reactions from machine learned potentials.
    Young TA; Johnston-Wood T; Zhang H; Duarte F
    Phys Chem Chem Phys; 2022 Sep; 24(35):20820-20827. PubMed ID: 36004770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio metadynamics determination of temperature-dependent free-energy landscape in ultrasmall silver clusters.
    Sucerquia D; Parra C; Cossio P; Lopez-Acevedo O
    J Chem Phys; 2022 Apr; 156(15):154301. PubMed ID: 35459298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive-numerical-bias metadynamics.
    Khanjari N; Eslami H; Müller-Plathe F
    J Comput Chem; 2017 Dec; 38(31):2721-2729. PubMed ID: 28948616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring, refining, and validating the paradynamics QM/MM sampling.
    Plotnikov NV; Warshel A
    J Phys Chem B; 2012 Aug; 116(34):10342-56. PubMed ID: 22853800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.
    Raju RK; Sivakumar S; Wang X; Ulissi ZW
    J Chem Inf Model; 2023 Oct; 63(20):6192-6197. PubMed ID: 37824704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.