BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34100898)

  • 41. Reversibility of developmental heat and cold plasticity is asymmetric and has long-lasting consequences for adult thermal tolerance.
    Slotsbo S; Schou MF; Kristensen TN; Loeschcke V; Sørensen JG
    J Exp Biol; 2016 Sep; 219(Pt 17):2726-32. PubMed ID: 27353229
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity.
    van Heerwaarden B; Sgrò C; Kellermann VM
    Proc Biol Sci; 2024 Feb; 291(2016):20232700. PubMed ID: 38320612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size.
    Vézina F; Jalvingh KM; Dekinga A; Piersma T
    J Exp Biol; 2006 Aug; 209(Pt 16):3141-54. PubMed ID: 16888062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing drosophila winter morphotypes.
    Stockton DG; Loeb GM
    J Insect Physiol; 2021; 131():104246. PubMed ID: 33930409
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cold tolerance and metabolic rate increased by cold acclimation in Drosophila albomicans from natural populations.
    Isobe K; Takahashi A; Tamura K
    Genes Genet Syst; 2013; 88(5):289-300. PubMed ID: 24694392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat hardening of a larval amphibian is dependent on acclimation period and temperature.
    Dallas J; Warne RW
    J Exp Zool A Ecol Integr Physiol; 2023 May; 339(4):339-345. PubMed ID: 36811331
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).
    Vo P; Gridi-Papp M
    J Therm Biol; 2017 May; 66():49-55. PubMed ID: 28477909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Physiological Plasticity in Response to Cold Acclimation for Nonnative Italian Wall Lizards (
    Haro D; Pauly GB; Liwanag HEM
    Physiol Biochem Zool; 2023; 96(5):356-368. PubMed ID: 37713717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Divergent metabolomic profiles of cold-exposed mature and immature females of tropical versus temperate Drosophila species.
    Mensch J; Kreiman L; Schilman PE; Hasson E; Renault D; Colinet H
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Aug; 258():110995. PubMed ID: 34044160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A lack of repeatability creates the illusion of a trade-off between basal and plastic cold tolerance.
    O'Neill E; Davis HE; MacMillan HA
    Proc Biol Sci; 2021 Dec; 288(1964):20212121. PubMed ID: 34875191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus.
    Elnitsky MA; Benoit JB; Denlinger DL; Lee RE
    J Insect Physiol; 2008; 54(10-11):1432-9. PubMed ID: 18761345
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress.
    Guo Q; Li X; Niu L; Jameson PE; Zhou W
    Plant Physiol; 2021 May; 186(1):677-695. PubMed ID: 33582802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rejection of the beneficial acclimation hypothesis (BAH) for short term heat acclimation in Drosophila nepalensis.
    Ramniwas S; Kumar G; Singh D
    Genetica; 2020 Aug; 148(3-4):173-182. PubMed ID: 32789784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Beneficial developmental acclimation in reproductive performance under cold but not heat stress.
    Simões P; Santos MA; Carromeu-Santos A; Quina AS; Santos M; Matos M
    J Therm Biol; 2020 May; 90():102580. PubMed ID: 32479384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.
    Toxopeus J; Jakobs R; Ferguson LV; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2016 Jun; 89():37-51. PubMed ID: 27039032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stage-Specific and Seasonal Induction of the Overwintering Morph of Spotted Wing Drosophila (Diptera: Drosophilidae).
    Leach H; Stone J; Van Timmeren S; Isaacs R
    J Insect Sci; 2019 Jul; 19(4):. PubMed ID: 31268546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phenotypic Plasticity Promotes Overwintering Survival in A Globally Invasive Crop Pest,
    Stockton DG; Wallingford AK; Loeb GM
    Insects; 2018 Aug; 9(3):. PubMed ID: 30134571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cold Hardiness of Winter-Acclimated Drosophila suzukii (Diptera: Drosophilidae) Adults.
    Stephens AR; Asplen MK; Hutchison WD; Venette RC
    Environ Entomol; 2015 Dec; 44(6):1619-26. PubMed ID: 26317777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster.
    Huisamen EJ; Colinet H; Karsten M; Terblanche JS
    J Insect Physiol; 2022 Jul; 140():104403. PubMed ID: 35667397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.