These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34101125)

  • 1. Reviewing Challenges of Predicting Protein Melting Temperature Change Upon Mutation Through the Full Analysis of a Highly Detailed Dataset with High-Resolution Structures.
    Louis BBV; Abriata LA
    Mol Biotechnol; 2021 Oct; 63(10):863-884. PubMed ID: 34101125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDDG: Predicting the Stability Change of Protein Point Mutations Using Neural Networks.
    Cao H; Wang J; He L; Qi Y; Zhang JZ
    J Chem Inf Model; 2019 Apr; 59(4):1508-1514. PubMed ID: 30759982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the performance of computational predictors for estimating protein stability changes upon missense mutations.
    Iqbal S; Li F; Akutsu T; Ascher DB; Webb GI; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34058752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC.
    Pucci F; Bourgeas R; Rooman M
    Sci Rep; 2016 Mar; 6():23257. PubMed ID: 26988870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PremPS: Predicting the impact of missense mutations on protein stability.
    Chen Y; Lu H; Zhang N; Zhu Z; Wang S; Li M
    PLoS Comput Biol; 2020 Dec; 16(12):e1008543. PubMed ID: 33378330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.
    Abriata LA; Bovigny C; Dal Peraro M
    BMC Bioinformatics; 2016 Jun; 17(1):242. PubMed ID: 27315797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational tools help improve protein stability but with a solubility tradeoff.
    Broom A; Jacobi Z; Trainor K; Meiering EM
    J Biol Chem; 2017 Sep; 292(35):14349-14361. PubMed ID: 28710274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithms for predicting protein folding rates and stability of mutant proteins: comparison with statistical methods.
    Gromiha MM; Huang LT
    Curr Protein Pept Sci; 2011 Sep; 12(6):490-502. PubMed ID: 21787301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FireProtDB: database of manually curated protein stability data.
    Stourac J; Dubrava J; Musil M; Horackova J; Damborsky J; Mazurenko S; Bednar D
    Nucleic Acids Res; 2021 Jan; 49(D1):D319-D324. PubMed ID: 33166383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding simple rules for discriminating folding rate change upon single mutation by statistical and learning methods.
    Huang LT
    Protein Pept Lett; 2014; 21(8):743-51. PubMed ID: 23859003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0.
    Dehouck Y; Grosfils A; Folch B; Gilis D; Bogaerts P; Rooman M
    Bioinformatics; 2009 Oct; 25(19):2537-43. PubMed ID: 19654118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset.
    Zheng F; Liu Y; Yang Y; Wen Y; Li M
    Protein Sci; 2024 Jan; 33(1):e4861. PubMed ID: 38084013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic exploration of [Formula: see text] cutoff ranges in machine learning models for protein mutation stability prediction.
    Olney R; Tuor A; Jagodzinski F; Hutchinson B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1840022. PubMed ID: 30419784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based prediction of the effects of a missense variant on protein stability.
    Yang Y; Chen B; Tan G; Vihinen M; Shen B
    Amino Acids; 2013 Mar; 44(3):847-55. PubMed ID: 23064876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.
    Jia L; Yarlagadda R; Reed CC
    PLoS One; 2015; 10(9):e0138022. PubMed ID: 26361227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of simple descriptors and applicability domain in predicting change in protein thermostability.
    McGuinness KN; Pan W; Sheridan RP; Murphy G; Crespo A
    PLoS One; 2018; 13(9):e0203819. PubMed ID: 30192891
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.