BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 34101217)

  • 1. A Bayesian hierarchical monitoring design for phase II cancer clinical trials: Incorporating information on response duration into monitoring rules.
    Wang J; Ma J; Cai C; Daver N; Ning J
    Stat Med; 2021 Sep; 40(21):4629-4639. PubMed ID: 34101217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Sequential Monitoring of Single-Arm Trials: A Comparison of Futility Rules Based on Binary Data.
    Sambucini V
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of futility monitoring guidelines using completed phase III oncology trials.
    Zhang Q; Freidlin B; Korn EL; Halabi S; Mandrekar S; Dignam JJ
    Clin Trials; 2017 Feb; 14(1):48-58. PubMed ID: 27590208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring futility and efficacy in phase II trials with Bayesian posterior distributions-A calibration approach.
    Kopp-Schneider A; Wiesenfarth M; Witt R; Edelmann D; Witt O; Abel U
    Biom J; 2019 May; 61(3):488-502. PubMed ID: 30175405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Bayesian early stopping boundaries for phase II clinical trials.
    Jiang L; Yan F; Thall PF; Huang X
    Pharm Stat; 2020 Nov; 19(6):928-939. PubMed ID: 32720462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a multi-arm multi-stage Bayesian design for phase II drug selection trials - an example in hemato-oncology.
    Jacob L; Uvarova M; Boulet S; Begaj I; Chevret S
    BMC Med Res Methodol; 2016 Jun; 16():67. PubMed ID: 27250349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New statistical strategy for monitoring safety and efficacy in single-arm clinical trials.
    Thall PF; Simon RM; Estey EH
    J Clin Oncol; 1996 Jan; 14(1):296-303. PubMed ID: 8558211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpreting a Bayesian phase II futility clinical trial.
    Beall J; Cassarly C; Martin R
    Trials; 2022 Nov; 23(1):953. PubMed ID: 36414953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian adaptive design for clinical trials of rare efficacy outcomes with multiple definitions.
    Golchi S; Willard JJ; Pullenayegum E; Bassani DG; Pell LG; Thorlund K; Roth DE
    Clin Trials; 2022 Dec; 19(6):613-622. PubMed ID: 36408565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical rules for safety monitoring in clinical trials.
    Martens MJ; Logan BR
    Clin Trials; 2024 Apr; 21(2):152-161. PubMed ID: 37877375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal timing for an accelerated interim futility analysis incorporating real world data.
    Haine LMF; Murray TA; Koopmeiners JS
    Contemp Clin Trials; 2024 May; 140():107489. PubMed ID: 38461938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Over-accrual in Bayesian adaptive trials with continuous futility stopping.
    Barrado LG; Burzykowski T
    Clin Trials; 2023 Jun; 20(3):252-260. PubMed ID: 36803007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extension of Bayesian predictive sample size selection designs for monitoring efficacy and safety.
    Teramukai S; Daimon T; Zohar S
    Stat Med; 2015 Sep; 34(22):3029-39. PubMed ID: 26038148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Bayesian statistical methodology to clinical trial design: A case study of a phase 2 trial with an interim futility assessment in patients with knee osteoarthritis.
    Smith CL; Jin Y; Raddad E; McNearney TA; Ni X; Monteith D; Brown R; Deeg MA; Schnitzer T
    Pharm Stat; 2019 Jan; 18(1):39-53. PubMed ID: 30321909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interim futility analysis with intermediate endpoints.
    Goldman B; LeBlanc M; Crowley J
    Clin Trials; 2008; 5(1):14-22. PubMed ID: 18283075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage seamless transition design from open-label single-arm to randomized double-arm clinical trials.
    Shi H; Yin G
    Stat Methods Med Res; 2018 Jan; 27(1):158-171. PubMed ID: 28034171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A randomized Bayesian optimal phase II design with binary endpoint.
    Ding Y
    J Biopharm Stat; 2023 Mar; 33(2):151-166. PubMed ID: 35793222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages of Bayesian monitoring methods in deciding whether and when to stop a clinical trial: an example of a neonatal cooling trial.
    Pedroza C; Tyson JE; Das A; Laptook A; Bell EF; Shankaran S;
    Trials; 2016 Jul; 17(1):335. PubMed ID: 27450203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials.
    Wason JM; Trippa L
    Stat Med; 2014 Jun; 33(13):2206-21. PubMed ID: 24421053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian basket trial design accounting for uncertainties of homogeneity and heterogeneity of treatment effect among subpopulations.
    Asano J; Hirakawa A
    Pharm Stat; 2020 Nov; 19(6):975-1000. PubMed ID: 32779393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.