These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34101335)
1. Dry Reforming of CH Cheng F; Duan X; Xie K Angew Chem Int Ed Engl; 2021 Aug; 60(34):18792-18799. PubMed ID: 34101335 [TBL] [Abstract][Full Text] [Related]
2. Active Exsolved Metal-Oxide Interfaces in Porous Single-Crystalline Ceria Monoliths for Efficient and Durable CH Xiao Y; Xie K Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202113079. PubMed ID: 34676642 [TBL] [Abstract][Full Text] [Related]
3. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Song Y; Ozdemir E; Ramesh S; Adishev A; Subramanian S; Harale A; Albuali M; Fadhel BA; Jamal A; Moon D; Choi SH; Yavuz CT Science; 2020 Feb; 367(6479):777-781. PubMed ID: 32054760 [TBL] [Abstract][Full Text] [Related]
4. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming. Zhang X; Deng J; Lan T; Shen Y; Qu W; Zhong Q; Zhang D ACS Appl Mater Interfaces; 2022 Jun; 14(22):25439-25447. PubMed ID: 35604327 [TBL] [Abstract][Full Text] [Related]
5. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH le Saché E; Alvarez Moreno A; Reina TR Front Chem; 2021; 9():672419. PubMed ID: 33937208 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous production of syngas and carbon nanotubes from CO Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758 [TBL] [Abstract][Full Text] [Related]
7. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related]
8. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
9. Highly efficient electrochemical reforming of CH Lu J; Zhu C; Pan C; Lin W; Lemmon JP; Chen F; Li C; Xie K Sci Adv; 2018 Mar; 4(3):eaar5100. PubMed ID: 29670946 [TBL] [Abstract][Full Text] [Related]
10. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al Zhang S; Tang L; Yu J; Zhan W; Wang L; Guo Y; Guo Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58605-58618. PubMed ID: 34866393 [TBL] [Abstract][Full Text] [Related]
11. Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO Hong Phuong P; Cam Anh H; Tri N; Phung Anh N; Cam Loc L ACS Omega; 2022 Jun; 7(23):20092-20103. PubMed ID: 35721961 [TBL] [Abstract][Full Text] [Related]
12. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single-Crystalline CeO Ye L; Shang Z; Xie K Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202207211. PubMed ID: 35670138 [TBL] [Abstract][Full Text] [Related]
13. CO Alabi WO Environ Pollut; 2018 Nov; 242(Pt B):1566-1576. PubMed ID: 30166203 [TBL] [Abstract][Full Text] [Related]
14. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts. Chein R; Yang Z ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481 [TBL] [Abstract][Full Text] [Related]
15. Effect of niobium addition over Ni/MCM-41 catalysts for dry reforming of biogas. Zempulski DA; de Alencar ÁO; de Andrade Schaffner R; do Nascimento CT; Borba CE; Alves HJ Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39333433 [TBL] [Abstract][Full Text] [Related]
16. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Zhang W; Zhao H; Song H; Chou L Chem Asian J; 2024 Sep; 19(17):e202400503. PubMed ID: 38842469 [TBL] [Abstract][Full Text] [Related]
17. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
18. Catalytic characteristics of a Ni-MgO/HZSM-5 catalyst for steam reforming of toluene. Wu W; Fan Q; Yi B; Liu B; Jiang R RSC Adv; 2020 May; 10(35):20872-20881. PubMed ID: 35517761 [TBL] [Abstract][Full Text] [Related]
19. Catalytic performance of activated carbon supported cobalt catalyst for CO2 reforming of CH4. Zhang G; Su A; Du Y; Qu J; Xu Y J Colloid Interface Sci; 2014 Nov; 433():149-155. PubMed ID: 25127295 [TBL] [Abstract][Full Text] [Related]
20. Promising Utilization of CO Ray D; Chawdhury P; Subrahmanyam C ACS Omega; 2020 Jun; 5(23):14040-14050. PubMed ID: 32566870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]