BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34101379)

  • 1. Facile Synthesis of Polyphenothiazine as a High-Performance p-Type Cathode for Rechargeable Lithium Batteries.
    Wang X; Li G; Han Y; Wang F; Chu J; Cai T; Wang B; Song Z
    ChemSusChem; 2021 Aug; 14(15):3174-3181. PubMed ID: 34101379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorinated Carbons as Rechargeable Li-Ion Battery Cathodes in the Voltage Window of 0.5-4.8 V.
    Chen P; Jiang C; Jiang J; Zou J; Ran Q; Wang X; Niu X; Wang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30576-30582. PubMed ID: 34165960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling Li
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium Storage Mechanism: A Review of Perylene Diimide N-Substituted with a 1,2,4-Triazol-3-yl Ring for Organic Cathode Materials.
    Seong H; Nam W; Moon JH; Kim G; Jin Y; Yoo H; Jung T; Myung Y; Lee K; Choi J
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58451-58461. PubMed ID: 38051908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Synthesis of Diazaanthraquinone Dimers as High-Capacity Organic Cathode Materials for Rechargeable Lithium Batteries.
    Zhang P; Gan X; Huang L; Wang J; Li M; Hu Z; Wang R; Yu T; Song Z
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):14929-14939. PubMed ID: 38483071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost naphthaldiimide based organic cathode for rechargeable lithium-ion batteries.
    Wang Z; Zhang P; Li J; Zhang C; Jiang JX; Lv M; Ding Z; Zhang B
    Front Chem; 2022; 10():1056244. PubMed ID: 36465871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Electropolymerization Enables Ultrafast Long Cycle Life and High-Voltage Organic Cathodes for Lithium Batteries.
    Zhao C; Chen Z; Wang W; Xiong P; Li B; Li M; Yang J; Xu Y
    Angew Chem Int Ed Engl; 2020 Jul; 59(29):11992-11998. PubMed ID: 32266770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Immobilized Organic Anode Material for High Performance Rechargeable Lithium Batteries.
    Zhang S; Ren S; Han D; Xiao M; Wang S; Sun L; Meng Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36237-36246. PubMed ID: 32689786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries.
    Song Z; Xu T; Gordin ML; Jiang YB; Bae IT; Xiao Q; Zhan H; Liu J; Wang D
    Nano Lett; 2012 May; 12(5):2205-11. PubMed ID: 22449138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VOCl as a Cathode for Rechargeable Chloride Ion Batteries.
    Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pyrazine-Based Polymer for Fast-Charge Batteries.
    Mao M; Luo C; Pollard TP; Hou S; Gao T; Fan X; Cui C; Yue J; Tong Y; Yang G; Deng T; Zhang M; Ma J; Suo L; Borodin O; Wang C
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17820-17826. PubMed ID: 31571354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries.
    Zhang C; Xu Y; He K; Dong Y; Zhao H; Medenbach L; Wu Y; Balducci A; Hannappel T; Lei Y
    Small; 2020 Sep; 16(38):e2002953. PubMed ID: 32815290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes.
    Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries.
    Yang J; Tang M; Liu H; Chen X; Xu Z; Huang J; Su Q; Xia Y
    Small; 2019 Dec; 15(52):e1905311. PubMed ID: 31663266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical Polymer Containing a Polytriphenylamine Backbone: Its Synthesis and Electrochemical Performance as the Cathode of Lithium-Ion Batteries.
    Su C; Yang F; Xu L; Zhu X; He H; Zhang C
    Chempluschem; 2015 Mar; 80(3):606-611. PubMed ID: 31973399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.