These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 34101434)
1. Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Hao N; Dai Z; Xiong M; Han X; Zuo Y; Qian J; Wang K Anal Chem; 2021 Jun; 93(24):8393-8398. PubMed ID: 34101434 [TBL] [Abstract][Full Text] [Related]
2. Portable Photoelectrochromic Visualization Sensor for Detection of Chemical Oxygen Demand. Dai Z; Hao N; Xiong M; Han X; Zuo Y; Wang K Anal Chem; 2020 Oct; 92(19):13604-13609. PubMed ID: 32924512 [TBL] [Abstract][Full Text] [Related]
3. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode. Kim YC; Lee KH; Sasaki S; Hashimoto K; Ikebukuro K; Karube I Anal Chem; 2000 Jul; 72(14):3379-82. PubMed ID: 10939416 [TBL] [Abstract][Full Text] [Related]
4. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Kim YC; Sasaki S; Yano K; Ikebukuro K; Hashimoto K; Karube I Anal Chem; 2002 Aug; 74(15):3858-64. PubMed ID: 12175176 [TBL] [Abstract][Full Text] [Related]
5. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand. Wang C; Wu J; Wang P; Ao Y; Hou J; Qian J Anal Chim Acta; 2013 Mar; 767():141-7. PubMed ID: 23452798 [TBL] [Abstract][Full Text] [Related]
6. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Zhang S; Li L; Zhao H Environ Sci Technol; 2009 Oct; 43(20):7810-5. PubMed ID: 19921898 [TBL] [Abstract][Full Text] [Related]
7. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters. Liao J; Lin S; Zeng M; Yang Y Water Res; 2016 May; 94():296-304. PubMed ID: 26971805 [TBL] [Abstract][Full Text] [Related]
8. WO₃/W nanopores sensor for chemical oxygen demand (COD) determination under visible light. Li X; Bai J; Liu Q; Li J; Zhou B Sensors (Basel); 2014 Jun; 14(6):10680-90. PubMed ID: 24940868 [TBL] [Abstract][Full Text] [Related]
9. Improved UV/O Le G; Yang H; Yu X Water Sci Technol; 2018 Mar; 77(5-6):1271-1279. PubMed ID: 29528315 [TBL] [Abstract][Full Text] [Related]
10. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research. Chen J; Zhang J; Xian Y; Ying X; Liu M; Jin L Water Res; 2005 Apr; 39(7):1340-6. PubMed ID: 15862333 [TBL] [Abstract][Full Text] [Related]
11. A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement. Huang X; Zhu Y; Yang W; Jiang A; Jin X; Zhang Y; Yan L; Zhang G; Liu Z Molecules; 2019 Aug; 24(17):. PubMed ID: 31466335 [TBL] [Abstract][Full Text] [Related]
12. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand. Chee GJ; Nomura Y; Ikebukuro K; Karube I Biosens Bioelectron; 2005 Jul; 21(1):67-73. PubMed ID: 15967352 [TBL] [Abstract][Full Text] [Related]
13. [Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City]. Wang J; Bi CJ; Chen ZL; Zhou D Huan Jing Ke Xue; 2013 May; 34(5):1735-44. PubMed ID: 23914522 [TBL] [Abstract][Full Text] [Related]
14. Sustainable and green persulfate-based chemiluminescent method for on-site estimation of chemical oxygen demand in waters. González-Fuenzalida RA; Molins-Legua C; Calabria D; Mirasoli M; Guardigli M; Roda A; Campíns-Falcó P Anal Chim Acta; 2022 Aug; 1223():340196. PubMed ID: 35999003 [TBL] [Abstract][Full Text] [Related]
15. Dual electrodes degradation of Amaranth using a thin-film photocatalytic reactor with dual slant-placed electrodes. Xu YL; Li JX; Zhong DJ; Jia JP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1700-6. PubMed ID: 23947709 [TBL] [Abstract][Full Text] [Related]
16. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit. Geun Jeong B; Min Yoon S; Ho Choi C; Koang Kwon K; Sik Hyun M; Heui Yi D; Soo Park H; Kim M; Joo Kim H J Environ Monit; 2007 Dec; 9(12):1352-7. PubMed ID: 18049774 [TBL] [Abstract][Full Text] [Related]
17. TiO2 nanotube sensor for online chemical oxygen demand determination in conjunction with flow injection technique. Li X; Yin W; Li J; Bai J; Huang K; Li J; Zhou B Water Environ Res; 2014 Jun; 86(6):532-9. PubMed ID: 25109199 [TBL] [Abstract][Full Text] [Related]
18. Analytical Approaches for Determining Chemical Oxygen Demand in Water Bodies: A Review. Li J; Luo G; He L; Xu J; Lyu J Crit Rev Anal Chem; 2018 Jan; 48(1):47-65. PubMed ID: 28857621 [TBL] [Abstract][Full Text] [Related]
19. Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout. Sailapu SK; Kraikaew P; Sabaté N; Bakker E ACS Sens; 2020 Sep; 5(9):2909-2914. PubMed ID: 32881477 [TBL] [Abstract][Full Text] [Related]
20. Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system. Silvestre CI; Frigerio C; Santos JL; Lima JL Anal Chim Acta; 2011 Aug; 699(2):193-7. PubMed ID: 21704774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]