These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34101579)

  • 1. Living Rat SSVEP Mapping With Acoustoelectric Brain Imaging.
    Song X; Chen X; Guo J; Xu M; Ming D
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):75-82. PubMed ID: 34101579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Transcranial Acoustoelectric Brain Imaging of Different Steady-State Visual Stimulation Paradigms.
    Song X; Su X; Chen X; Xu M; Ming D
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2233-2241. PubMed ID: 35930511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The processing network of high-frequency acoustoelectric signal in the living rat brain.
    Song X; Huang P; Chen X; Xu M; Ming D
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36044882
    [No Abstract]   [Full Text] [Related]  

  • 4. An adaptive acoustoelectric signal decoding algorithm based on Fourier fitting for brain function imaging.
    Song X; Wang T; Su M; Chen X; Liu X; Ming D
    Front Physiol; 2022; 13():1054103. PubMed ID: 36569760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces.
    Cao T; Wan F; Wong CM; da Cruz JN; Hu Y
    Biomed Eng Online; 2014 Mar; 13(1):28. PubMed ID: 24621009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SSVEP recognition by modeling brain activity using system identification based on Box-Jenkins model.
    Safi SMM; Pooyan M; Motie Nasrabadi A
    Comput Biol Med; 2018 Oct; 101():82-89. PubMed ID: 30114547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic component analysis as a spatial filter for SSVEP-based brain-computer interface.
    Kiran Kumar GR; Ramasubba Reddy M
    J Neurosci Methods; 2018 Sep; 307():164-174. PubMed ID: 29890196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SSVEP recognition using common feature analysis in brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Apr; 244():8-15. PubMed ID: 24727656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Approach to Decode Covert Spatial Attention Using SSVEP and Single-Frequency Phase-Coded Stimuli.
    Armengol-Urpi A; Salazar-Gomez AF; Sarma SE
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5694-5699. PubMed ID: 34892414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SSVEP-EEG Denoising via Image Filtering Methods.
    Yan W; Du C; Wu Y; Zheng X; Xu G
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1634-1643. PubMed ID: 34398754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces.
    Zhu F; Jiang L; Dong G; Gao X; Wang Y
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary study for extraction of P300 and SSVEP by stimulus presentation using phase inversion technique in hybrid BCI.
    Fukami T; Ishihara K; Ishikawa F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():63-6. PubMed ID: 26736201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding semantics from intermodulation responses in frequency-tagged stereotactic EEG.
    Chen J; Meng X; Liu Z; Shang B; Chang C; Ku Y
    J Neurosci Methods; 2022 Dec; 382():109727. PubMed ID: 36241018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on Steady State Visual Evoked Potential Target Detection Based on Two-dimensional Ensemble Empirical Mode Decomposition].
    Yang C; Huang L; Wen N; Yang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Jun; 32(3):508-13. PubMed ID: 26485969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing SSVEP-Based Brain-Computer Interface with Two-Step Task-Related Component Analysis.
    Lee HK; Choi YS
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.