These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34101604)

  • 21. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous action deep reinforcement learning for propofol dosing during general anesthesia.
    Schamberg G; Badgeley M; Meschede-Krasa B; Kwon O; Brown EN
    Artif Intell Med; 2022 Jan; 123():102227. PubMed ID: 34998516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming.
    Qi W; Fan H; Karimi HR; Su H
    Neural Netw; 2023 Jul; 164():489-496. PubMed ID: 37201309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reinforcement learning and its connections with neuroscience and psychology.
    Subramanian A; Chitlangia S; Baths V
    Neural Netw; 2022 Jan; 145():271-287. PubMed ID: 34781215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep Reinforcement Learning and Its Neuroscientific Implications.
    Botvinick M; Wang JX; Dabney W; Miller KJ; Kurth-Nelson Z
    Neuron; 2020 Aug; 107(4):603-616. PubMed ID: 32663439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers.
    Villarrubia-Martin EA; Rodriguez-Benitez L; Jimenez-Linares L; Muñoz-Valero D; Liu J
    Int J Neural Syst; 2023 Dec; 33(12):2350065. PubMed ID: 37857407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots.
    Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-Based Reinforcement Learning with Automated Planning for Network Management.
    Ordonez A; Caicedo OM; Villota W; Rodriguez-Vivas A; da Fonseca NLS
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsic Rewards for Maintenance, Approach, Avoidance, and Achievement Goal Types.
    Dhakan P; Merrick K; Rañó I; Siddique N
    Front Neurorobot; 2018; 12():63. PubMed ID: 30356820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An autonomous decision-making framework for gait recognition systems against adversarial attack using reinforcement learning.
    Maqsood M; Yasmin S; Gillani S; Aadil F; Mehmood I; Rho S; Yeo SS
    ISA Trans; 2023 Jan; 132():80-93. PubMed ID: 36494214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The value-complexity trade-off for reinforcement learning based brain-computer interfaces.
    Levi-Aharoni H; Tishby N
    J Neural Eng; 2021 Feb; 17(6):066011. PubMed ID: 33586668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforcement Learning in Spiking Neural Networks with Stochastic and Deterministic Synapses.
    Yuan M; Wu X; Yan R; Tang H
    Neural Comput; 2019 Dec; 31(12):2368-2389. PubMed ID: 31614099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A self-learning cognitive architecture exploiting causality from rewards.
    Li H; Dou R; Keil A; Principe JC
    Neural Netw; 2022 Jun; 150():274-292. PubMed ID: 35339009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orientation-Preserving Rewards' Balancing in Reinforcement Learning.
    Ren J; Guo S; Chen F
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6458-6472. PubMed ID: 34115593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity.
    Pyle R; Rosenbaum R
    Neural Comput; 2019 Jul; 31(7):1430-1461. PubMed ID: 31113300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.