These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34101929)

  • 1. Convergence of Machine Vision and Melt Electrowriting.
    Mieszczanek P; Robinson TM; Dalton PD; Hutmacher DW
    Adv Mater; 2021 Jul; 33(29):e2100519. PubMed ID: 34101929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.
    Böhm C; Stahlhut P; Weichhold J; Hrynevich A; Teßmar J; Dalton PD
    Small; 2022 Jan; 18(3):e2104193. PubMed ID: 34741411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Printomics: the high-throughput analysis of printing parameters applied to melt electrowriting.
    Wunner FM; Mieszczanek P; Bas O; Eggert S; Maartens J; Dalton PD; De-Juan-Pardo EM; Hutmacher DW
    Biofabrication; 2019 Jan; 11(2):025004. PubMed ID: 30616231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melt Electrowriting of Complex 3D Anatomically Relevant Scaffolds.
    Saidy NT; Shabab T; Bas O; Rojas-González DM; Menne M; Henry T; Hutmacher DW; Mela P; De-Juan-Pardo EM
    Front Bioeng Biotechnol; 2020; 8():793. PubMed ID: 32850700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.
    Blum C; Weichhold J; Hochleitner G; Stepanenko V; Würthner F; Groll J; Jungst T
    3D Print Addit Manuf; 2021 Oct; 8(5):315-321. PubMed ID: 36654937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.
    Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C
    Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated melt electrowritting platform with real-time process monitoring.
    Mieszczanek P; Eggert S; Corke P; Hutmacher DW
    HardwareX; 2021 Oct; 10():e00246. PubMed ID: 35607669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures.
    Wunner FM; Wille ML; Noonan TG; Bas O; Dalton PD; De-Juan-Pardo EM; Hutmacher DW
    Adv Mater; 2018 May; 30(20):e1706570. PubMed ID: 29633443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations.
    King WE; Bowlin GL
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33808288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration.
    Bakirci E; Schaefer N; Dahri O; Hrynevich A; Strissel P; Strick R; Dalton PD; Villmann C
    Adv Biosyst; 2020 Oct; 4(10):e2000077. PubMed ID: 32875734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting using Microscale Layer Shifting.
    Liashenko I; Hrynevich A; Dalton PD
    Adv Mater; 2020 Jul; 32(28):e2001874. PubMed ID: 32459023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing.
    Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt Electrospinning of Nanofibers from Medical-Grade Poly(ε-Caprolactone) with a Modified Nozzle.
    Großhaus C; Bakirci E; Berthel M; Hrynevich A; Kade JC; Hochleitner G; Groll J; Dalton PD
    Small; 2020 Nov; 16(44):e2003471. PubMed ID: 33048431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additive manufacturing with polypropylene microfibers.
    Haigh JN; Dargaville TR; Dalton PD
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():883-887. PubMed ID: 28532105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting.
    von Witzleben M; Stoppe T; Ahlfeld T; Bernhardt A; Polk ML; Bornitz M; Neudert M; Gelinsky M
    Adv Healthc Mater; 2021 May; 10(10):e2002089. PubMed ID: 33506636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing.
    Pang L; Paxton NC; Ren J; Liu F; Zhan H; Woodruff MA; Bo A; Gu Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47993-48006. PubMed ID: 33044824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.