These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 34102564)
1. High-resolution CT image analysis based on 3D convolutional neural network can enhance the classification performance of radiologists in classifying pulmonary non-solid nodules. Zhang T; Wang Y; Sun Y; Yuan M; Zhong Y; Li H; Yu T; Wang J Eur J Radiol; 2021 Aug; 141():109810. PubMed ID: 34102564 [TBL] [Abstract][Full Text] [Related]
2. Human-recognizable CT image features of subsolid lung nodules associated with diagnosis and classification by convolutional neural networks. Jiang B; Zhang Y; Zhang L; H de Bock G; Vliegenthart R; Xie X Eur Radiol; 2021 Oct; 31(10):7303-7315. PubMed ID: 33847813 [TBL] [Abstract][Full Text] [Related]
3. Histogram analysis combined with morphological characteristics to discriminate adenocarcinoma in situ or minimally invasive adenocarcinoma from invasive adenocarcinoma appearing as pure ground-glass nodule. Zhang T; Pu XH; Yuan M; Zhong Y; Li H; Wu JF; Yu TF Eur J Radiol; 2019 Apr; 113():238-244. PubMed ID: 30927953 [TBL] [Abstract][Full Text] [Related]
4. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and without three-dimensional convolutional neural network. Yanagawa M; Niioka H; Kusumoto M; Awai K; Tsubamoto M; Satoh Y; Miyata T; Yoshida Y; Kikuchi N; Hata A; Yamasaki S; Kido S; Nagahara H; Miyake J; Tomiyama N Eur Radiol; 2021 Apr; 31(4):1978-1986. PubMed ID: 33011879 [TBL] [Abstract][Full Text] [Related]
6. HRCT texture analysis for pure or part-solid ground-glass nodules: distinguishability of adenocarcinoma in situ or minimally invasive adenocarcinoma from invasive adenocarcinoma. Yagi T; Yamazaki M; Ohashi R; Ogawa R; Ishikawa H; Yoshimura N; Tsuchida M; Ajioka Y; Aoyama H Jpn J Radiol; 2018 Feb; 36(2):113-121. PubMed ID: 29273964 [TBL] [Abstract][Full Text] [Related]
7. Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT. Qi K; Wang K; Wang X; Zhang YD; Lin G; Zhang X; Liu H; Huang W; Wu J; Zhao K; Liu J; Li J; Zhang X AJR Am J Roentgenol; 2024 Jan; 222(1):e2329674. PubMed ID: 37493322 [No Abstract] [Full Text] [Related]
8. Whole-Lesion Computed Tomography-Based Entropy Parameters for the Differentiation of Minimally Invasive and Invasive Adenocarcinomas Appearing as Pulmonary Subsolid Nodules. Chen X; Feng B; Chen Y; Hao Y; Duan X; Cui E; Liu Z; Zhang C; Long W J Comput Assist Tomogr; 2019; 43(5):817-824. PubMed ID: 31343995 [TBL] [Abstract][Full Text] [Related]
9. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
10. CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for pathological classification prediction. Li X; Zhang W; Yu Y; Zhang G; Zhou L; Wu Z; Liu B BMC Cancer; 2020 Jan; 20(1):60. PubMed ID: 31992239 [TBL] [Abstract][Full Text] [Related]
11. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: a multi-parameter prediction model. Hu F; Huang H; Jiang Y; Feng M; Wang H; Tang M; Zhou Y; Tan X; Liu Y; Xu C; Ding N; Bai C; Hu J; Yang D; Zhang Y J Thorac Dis; 2021 Sep; 13(9):5383-5394. PubMed ID: 34659805 [TBL] [Abstract][Full Text] [Related]
12. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427 [TBL] [Abstract][Full Text] [Related]
13. Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis. Gong J; Liu J; Hao W; Nie S; Wang S; Peng W Phys Med Biol; 2019 Jul; 64(13):135015. PubMed ID: 31167172 [TBL] [Abstract][Full Text] [Related]
14. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images. Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712 [TBL] [Abstract][Full Text] [Related]
15. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules. Cai J; Liu H; Yuan H; Wu Y; Xu Q; Lv Y; Li J; Fu J; Ye J Clin Radiol; 2021 Feb; 76(2):143-151. PubMed ID: 33187676 [TBL] [Abstract][Full Text] [Related]
16. Radiomic-Based Quantitative CT Analysis of Pure Ground-Glass Nodules to Predict the Invasiveness of Lung Adenocarcinoma. Xu F; Zhu W; Shen Y; Wang J; Xu R; Qutesh C; Song L; Gan Y; Pu C; Hu H Front Oncol; 2020; 10():872. PubMed ID: 32850301 [No Abstract] [Full Text] [Related]
17. Automatic detection and classification of rib fractures based on patients' CT images and clinical information via convolutional neural network. Zhou QQ; Tang W; Wang J; Hu ZC; Xia ZY; Zhang R; Fan X; Yong W; Yin X; Zhang B; Zhang H Eur Radiol; 2021 Jun; 31(6):3815-3825. PubMed ID: 33201278 [TBL] [Abstract][Full Text] [Related]
18. Analysis of CT morphologic features and attenuation for differentiating among transient lesions, atypical adenomatous hyperplasia, adenocarcinoma in situ, minimally invasive and invasive adenocarcinoma presenting as pure ground-glass nodules. Qi L; Xue K; Li C; He W; Mao D; Xiao L; Hua Y; Li M Sci Rep; 2019 Oct; 9(1):14586. PubMed ID: 31601919 [TBL] [Abstract][Full Text] [Related]
19. Detection of acute rib fractures on CT images with convolutional neural networks: effect of location and type of fracture and reader's experience. Azuma M; Nakada H; Takei M; Nakamura K; Katsuragawa S; Shinkawa N; Terada T; Masuda R; Hattori Y; Ide T; Kimura A; Shimomura M; Kawano M; Matsumura K; Meiri T; Ochiai H; Hirai T Emerg Radiol; 2022 Apr; 29(2):317-328. PubMed ID: 34855002 [TBL] [Abstract][Full Text] [Related]
20. 3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Zhao W; Yang J; Sun Y; Li C; Wu W; Jin L; Yang Z; Ni B; Gao P; Wang P; Hua Y; Li M Cancer Res; 2018 Dec; 78(24):6881-6889. PubMed ID: 30279243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]