These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34102648)

  • 1. Precise oculocentric mapping of transcranial magnetic stimulation-evoked phosphenes.
    Silva AE; Tsang K; Hasan SJ; Thompson B
    Neuroreport; 2021 Aug; 32(11):913-917. PubMed ID: 34102648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the visual brain areas susceptible to phosphene induction through brain stimulation.
    Schaeffner LF; Welchman AE
    Exp Brain Res; 2017 Jan; 235(1):205-217. PubMed ID: 27683006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach for documenting phosphenes induced by transcranial magnetic stimulation.
    Elkin-Frankston S; Fried PJ; Pascual-Leone A; Rushmore RJ; Valero-Cabr A
    J Vis Exp; 2010 Apr; (38):. PubMed ID: 20360672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of phosphene perception during saccadic eye movements: a transcranial magnetic stimulation study of the human visual cortex.
    Boulay C; Paus T
    Exp Brain Res; 2005 Nov; 167(2):297-300. PubMed ID: 16175365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-dependency effects on TMS: a look at motive phosphene behavior.
    Najib U; Horvath JC; Silvanto J; Pascual-Leone A
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21248686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds.
    Kanai R; Paulus W; Walsh V
    Clin Neurophysiol; 2010 Sep; 121(9):1551-1554. PubMed ID: 20382069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal and visual cortex distance from transcranial magnetic stimulation of the vertex affects phosphene perception.
    Webster K; Ro T
    Exp Brain Res; 2017 Sep; 235(9):2857-2866. PubMed ID: 28676920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation.
    Kammer T; Beck S; Erb M; Grodd W
    Clin Neurophysiol; 2001 Nov; 112(11):2015-21. PubMed ID: 11682339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the routes of perception: Hemispheric asymmetries in signal propagation dynamics.
    Bonfanti D; Mazzi C; Savazzi S
    Psychophysiology; 2024 Jun; 61(6):e14529. PubMed ID: 38279560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual motion adaptation increases the susceptibility of area V5/MT to phosphene induction by transcranial magnetic stimulation.
    Guzman-Lopez J; Silvanto J; Seemungal BM
    Clin Neurophysiol; 2011 Oct; 122(10):1951-5. PubMed ID: 21511523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural signature of phosphene perception.
    Taylor PC; Walsh V; Eimer M
    Hum Brain Mapp; 2010 Sep; 31(9):1408-17. PubMed ID: 20091790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas.
    Kammer T; Puls K; Erb M; Grodd W
    Exp Brain Res; 2005 Jan; 160(1):129-40. PubMed ID: 15368087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2.
    Salminen-Vaparanta N; Vanni S; Noreika V; Valiulis V; Móró L; Revonsuo A
    Cereb Cortex; 2014 Oct; 24(10):2751-60. PubMed ID: 23696280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of cortical excitability by motor and phosphene thresholds in transcranial magnetic stimulation.
    Gerwig M; Kastrup O; Meyer BU; Niehaus L
    J Neurol Sci; 2003 Nov; 215(1-2):75-8. PubMed ID: 14568132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between motor and phosphene thresholds: a transcranial magnetic stimulation study.
    Deblieck C; Thompson B; Iacoboni M; Wu AD
    Hum Brain Mapp; 2008 Jun; 29(6):662-70. PubMed ID: 17598167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.
    Samaha J; Gosseries O; Postle BR
    J Neurosci; 2017 Mar; 37(11):2824-2833. PubMed ID: 28179556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing short-latency cortical inhibition in the visual cortex with transcranial magnetic stimulation: A reliability study.
    Khammash D; Simmonite M; Polk TA; Taylor SF; Meehan SK
    Brain Stimul; 2019; 12(3):702-704. PubMed ID: 30700394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No correlation between moving phosphene and motor thresholds: a transcranial magnetic stimulation study.
    Antal A; Nitsche MA; Kincses TZ; Lampe C; Paulus W
    Neuroreport; 2004 Feb; 15(2):297-302. PubMed ID: 15076756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving visual sensitivity with subthreshold transcranial magnetic stimulation.
    Abrahamyan A; Clifford CW; Arabzadeh E; Harris JA
    J Neurosci; 2011 Mar; 31(9):3290-4. PubMed ID: 21368040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waves of awareness for occipital and parietal phosphenes perception.
    Bagattini C; Mazzi C; Savazzi S
    Neuropsychologia; 2015 Apr; 70():114-25. PubMed ID: 25698639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.