These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 34102991)

  • 1. Reactive Oxygen Species (ROS): Key Components in Cancer Therapies.
    Sahoo BM; Banik BK; Borah P; Jain A
    Anticancer Agents Med Chem; 2022; 22(2):215-222. PubMed ID: 34102991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of reactive oxygen species: an emerging approach for cancer therapy.
    Zou Z; Chang H; Li H; Wang S
    Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion.
    Tavsan Z; Kayali HA
    Biomed Pharmacother; 2019 Aug; 116():109004. PubMed ID: 31128404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-targeted induction of oxystress for cancer therapy.
    Fang J; Nakamura H; Iyer AK
    J Drug Target; 2007; 15(7-8):475-86. PubMed ID: 17671894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive oxygen species in cancer: Current findings and future directions.
    Nakamura H; Takada K
    Cancer Sci; 2021 Oct; 112(10):3945-3952. PubMed ID: 34286881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy.
    Gupta SC; Hevia D; Patchva S; Park B; Koh W; Aggarwal BB
    Antioxid Redox Signal; 2012 Jun; 16(11):1295-322. PubMed ID: 22117137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first copper(I) complex of anthrahydrazone with potential ROS scavenging activity showed significant in vitro anticancer activity by inducing apoptosis and autophagy.
    Liu RX; Luo RY; Tang MT; Liu YC; Chen ZF; Liang H
    J Inorg Biochem; 2021 May; 218():111390. PubMed ID: 33721719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals.
    Prasad S; Gupta SC; Tyagi AK
    Cancer Lett; 2017 Feb; 387():95-105. PubMed ID: 27037062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species and cancer paradox: To promote or to suppress?
    Galadari S; Rahman A; Pallichankandy S; Thayyullathil F
    Free Radic Biol Med; 2017 Mar; 104():144-164. PubMed ID: 28088622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free Radicals Generated in Perfluorocarbon-Water (Liquid-Liquid) Interfacial Contact Electrification and Their Application in Cancer Therapy.
    Li H; Wang Z; Chu X; Zhao Y; He G; Hu Y; Liu Y; Wang ZL; Jiang P
    J Am Chem Soc; 2024 May; 146(17):12087-12099. PubMed ID: 38647488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvoluting the role of reactive oxygen species and autophagy in human diseases.
    Wen X; Wu J; Wang F; Liu B; Huang C; Wei Y
    Free Radic Biol Med; 2013 Dec; 65():402-410. PubMed ID: 23872397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A radical approach to cancer.
    Das U
    Med Sci Monit; 2002 Apr; 8(4):RA79-92. PubMed ID: 11951081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walsuronoid B induces mitochondrial and lysosomal dysfunction leading to apoptotic rather than autophagic cell death via ROS/p53 signaling pathways in liver cancer.
    Geng YD; Zhang C; Lei JL; Yu P; Xia YZ; Zhang H; Yang L; Kong LY
    Biochem Pharmacol; 2017 Oct; 142():71-86. PubMed ID: 28673807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy.
    Qin X; Wu C; Niu D; Qin L; Wang X; Wang Q; Li Y
    Nat Commun; 2021 Sep; 12(1):5243. PubMed ID: 34475406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of reactive oxygen species on cancer formation and its treatment.
    Shah MA; Rogoff HA
    Semin Oncol; 2021 Jun; 48(3):238-245. PubMed ID: 34548190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T63, a new 4-arylidene curcumin analogue, induces cell cycle arrest and apoptosis through activation of the reactive oxygen species-FOXO3a pathway in lung cancer cells.
    Liu H; Zhou BH; Qiu X; Wang HS; Zhang F; Fang R; Wang XF; Cai SH; Du J; Bu XZ
    Free Radic Biol Med; 2012 Dec; 53(12):2204-17. PubMed ID: 23085518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.