These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34103016)

  • 1. Double matrix completion for circRNA-disease association prediction.
    Zuo ZL; Cao RF; Wei PJ; Xia JF; Zheng CH
    BMC Bioinformatics; 2021 Jun; 22(1):307. PubMed ID: 34103016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of circRNA-disease associations based on inductive matrix completion.
    Li M; Liu M; Bin Y; Xia J
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):42. PubMed ID: 32241268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNMFLP: Predicting circRNA-disease associations based on robust nonnegative matrix factorization and label propagation.
    Peng L; Yang C; Huang L; Chen X; Fu X; Liu W
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35534179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ensemble approach for CircRNA-disease association prediction based on autoencoder and deep neural network.
    Deepthi K; Jereesh AS
    Gene; 2020 Dec; 762():145040. PubMed ID: 32777520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting human disease-associated circRNAs based on locality-constrained linear coding.
    Ge E; Yang Y; Gang M; Fan C; Zhao Q
    Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iCircDA-MF: identification of circRNA-disease associations based on matrix factorization.
    Wei H; Liu B
    Brief Bioinform; 2020 Jul; 21(4):1356-1367. PubMed ID: 31197324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating Bipartite Network Projection and KATZ Measure to Identify Novel CircRNA-Disease Associations.
    Zhao Q; Yang Y; Ren G; Ge E; Fan C
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):578-584. PubMed ID: 31199265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks.
    Fan C; Lei X; Wu FX
    Int J Biol Sci; 2018; 14(14):1950-1959. PubMed ID: 30585259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying circRNA-miRNA interaction based on multi-biological interaction fusion.
    Yao D; Nong L; Qin M; Wu S; Yao S
    Front Microbiol; 2022; 13():987930. PubMed ID: 36620017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolution Neural Networks Using Deep Matrix Factorization for Predicting Circrna-Disease Association.
    Liu ZH; Ji CM; Ni JC; Wang YT; Qiao LJ; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):277-284. PubMed ID: 34951853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining K Nearest Neighbor With Nonnegative Matrix Factorization for Predicting Circrna-Disease Associations.
    Wang MN; Xie XJ; You ZH; Wong L; Li LP; Chen ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2610-2618. PubMed ID: 35675235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.
    Wang L; You ZH; Huang YA; Huang DS; Chan KCC
    Bioinformatics; 2020 Jul; 36(13):4038-4046. PubMed ID: 31793982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting novel CircRNA-disease associations based on random walk and logistic regression model.
    Ding Y; Chen B; Lei X; Liao B; Wu FX
    Comput Biol Chem; 2020 May; 87():107287. PubMed ID: 32446243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NCPCDA: network consistency projection for circRNA-disease association prediction.
    Li G; Yue Y; Liang C; Xiao Q; Ding P; Luo J
    RSC Adv; 2019 Oct; 9(57):33222-33228. PubMed ID: 35529153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.