These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 34103097)

  • 1. Computational Modeling of the Liver Arterial Blood Flow for Microsphere Therapy: Effect of Boundary Conditions.
    Taebi A; Pillai RM; Roudsari BS; Vu CT; Roncali E
    Bioengineering (Basel); 2020 Jun; 7(3):. PubMed ID: 32610459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-Cardiac Flow from Geometry Prescribed Computational Fluid Dynamics: Comparison with Ultrasound Vector Flow Imaging.
    Hvid R; Stuart MB; Jensen JA; Traberg MS
    Cardiovasc Eng Technol; 2023 Aug; 14(4):489-504. PubMed ID: 37322241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the accuracy of cerebrovascular computational fluid dynamics modeling through time-resolved experimental validation.
    Luisi CA; Witter TL; Nikoubashman O; Wiesmann M; Steinseifer U; Neidlin M
    Sci Rep; 2024 Apr; 14(1):8194. PubMed ID: 38589554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-dimensional computational model for blood flow in an elastic blood vessel with a rigid catheter.
    Pradhan AM; Mut F; Cebral JR
    Int J Numer Method Biomed Eng; 2024 Jul; 40(7):e3834. PubMed ID: 38736046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty quantification of the lattice Boltzmann method focussing on studies of human-scale vascular blood flow.
    McCullough JWS; Coveney PV
    Sci Rep; 2024 May; 14(1):11317. PubMed ID: 38760455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated Image-Based Computational Fluid Dynamics Modeling Software as an Instructional Tool.
    Boster KAS; Dong M; Oakes JM; Bellini C; Rayz VL; LaDisa JF; Parker D; Wilson NM; Shadden SC; Marsden AL; Goergen CJ
    J Biomech Eng; 2020 Nov; 142(11):. PubMed ID: 32529203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. svMorph: Interactive Geometry-Editing Tools for Virtual Patient-Specific Vascular Anatomies.
    Pham J; Wyetzner S; Pfaller MR; Parker DW; James DL; Marsden AL
    J Biomech Eng; 2023 Mar; 145(3):. PubMed ID: 36282508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New inflow boundary conditions for modeling twisted wind profiles in CFD simulation for evaluating the pedestrian-level wind field near an isolated building.
    Weerasuriya AU; Hu ZZ; Zhang XL; Tse KT; Li S; Chan PW
    Build Environ; 2018 Mar; 132():303-318. PubMed ID: 32287982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulating blood accumulation with improved smoothed particle hydrodynamics in surgical simulation system.
    Sun P; Liu PX
    Int J Med Robot; 2024 Aug; 20(4):e2663. PubMed ID: 39004951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting sample injection profiles in liquid chromatography: A modelling approach based on residence time distributions.
    Tirapelle M; Besenhard MO; Mazzei L; Zhou J; Hartzell SA; Sorensen E
    J Chromatogr A; 2023 Oct; 1708():464363. PubMed ID: 37729739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding surgical smoke in laparoscopy through Lagrangian Coherent Structures.
    Kumar S; Crowley C; Khan MF; Bustamante MD; Cahill RA; Nolan K
    PLoS One; 2023; 18(11):e0293287. PubMed ID: 37963139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Enhanced Temperature Control Approach to Simulate Profile Extrusion.
    Vidal J; Nóbrega JM
    Polymers (Basel); 2024 Mar; 16(7):. PubMed ID: 38611162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transarterial radioembolization: a systematic review on gaining control over the parameters that influence microsphere distribution.
    Snoeijink TJ; Vlogman TG; Roosen J; Groot Jebbink E; Jain K; Nijsen JFW
    Drug Deliv; 2023 Dec; 30(1):2226366. PubMed ID: 37341184
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a computational fluid dynamic model to investigate the hemodynamic impact of REBOA.
    Renaldo AC; Lane MR; Shapiro SR; Mobin F; Jordan JE; Williams TK; Neff LP; Gayzik FS; Rahbar E
    Front Physiol; 2022; 13():1005073. PubMed ID: 36311232
    [No Abstract]   [Full Text] [Related]  

  • 15. The Impact of Injection Distance to Bifurcations on Yttrium-90 Distribution in Liver Cancer Radioembolization.
    Taebi A; Janibek N; Goldman R; Pillai R; Vu CT; Roncali E
    J Vasc Interv Radiol; 2022 Jun; 33(6):668-677.e1. PubMed ID: 35301128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review.
    Aramburu J; Antón R; Rodríguez-Fraile M; Sangro B; Bilbao JI
    Cardiovasc Intervent Radiol; 2022 Jan; 45(1):12-20. PubMed ID: 34518913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic boundary conditions in SimVascular through inlet catheter modeling.
    Taebi A; Berk S; Roncali E
    BMC Res Notes; 2021 May; 14(1):215. PubMed ID: 34103097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics.
    Yoshida K; Nagao T; Okada K; Miyazaki S; Yang X; Yamazaki Y; Murase K
    Igaku Butsuri; 2008; 27(3):136-49. PubMed ID: 18367824
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.