BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 34103512)

  • 1. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification.
    Wang T; Shao W; Huang Z; Tang H; Zhang J; Ding Z; Huang K
    Nat Commun; 2021 Jun; 12(1):3445. PubMed ID: 34103512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction.
    Tanvir RB; Islam MM; Sobhan M; Luo D; Mondal AM
    Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38474033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification.
    Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S
    Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HyperTMO: a trusted multi-omics integration framework based on hypergraph convolutional network for patient classification.
    Wang H; Lin K; Zhang Q; Shi J; Song X; Wu J; Zhao C; He K
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38530977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-based GCN integrates multi-omics data for breast cancer subtype classification and patient-specific gene marker identification.
    Guo H; Lv X; Li Y; Li M
    Brief Funct Genomics; 2023 Nov; 22(5):463-474. PubMed ID: 37114942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. -Omics biomarker identification pipeline for translational medicine.
    Bravo-Merodio L; Williams JA; Gkoutos GV; Acharjee A
    J Transl Med; 2019 May; 17(1):155. PubMed ID: 31088492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.
    Xiao S; Lin H; Wang C; Wang S; Rajapakse JC
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4591-4600. PubMed ID: 37307177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.
    Chung RH; Kang CY
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.
    Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L
    Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Neuroimaging and Omics Datasets for Disease Classification Using Graph Neural Networks.
    Chan YH; Wang C; Soh WK; Rajapakse JC
    Front Neurosci; 2022; 16():866666. PubMed ID: 35677355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Molecular Biomarkers for Diseases With Machine Learning Based on Integrative Omics.
    Shi K; Lin W; Zhao XM
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2514-2525. PubMed ID: 32305934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.
    Doostparast Torshizi A; Petzold LR
    J Am Med Inform Assoc; 2018 Jan; 25(1):99-108. PubMed ID: 28505320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.