These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34103544)

  • 1. Identifying and characterizing high-risk clusters in a heterogeneous ICU population with deep embedded clustering.
    Castela Forte J; Yeshmagambetova G; van der Grinten ML; Hiemstra B; Kaufmann T; Eck RJ; Keus F; Epema AH; Wiering MA; van der Horst ICC
    Sci Rep; 2021 Jun; 11(1):12109. PubMed ID: 34103544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinically Distinct Subtypes of Acute Kidney Injury on Hospital Admission Identified by Machine Learning Consensus Clustering.
    Thongprayoon C; Vaitla P; Nissaisorakarn V; Mao MA; Genovez JLZ; Kattah AG; Pattharanitima P; Vallabhajosyula S; Keddis MT; Qureshi F; Dillon JJ; Garovic VD; Kashani KB; Cheungpasitporn W
    Med Sci (Basel); 2021 Sep; 9(4):. PubMed ID: 34698185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach.
    Vranas KC; Jopling JK; Sweeney TE; Ramsey MC; Milstein AS; Slatore CG; Escobar GJ; Liu VX
    Crit Care Med; 2017 Oct; 45(10):1607-1615. PubMed ID: 28640021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit.
    Ahmed FS; Ali L; Joseph BA; Ikram A; Ul Mustafa R; Bukhari SAC
    J Trauma Acute Care Surg; 2020 Oct; 89(4):736-742. PubMed ID: 32773672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model.
    Sikora A; Rafiei A; Rad MG; Keats K; Smith SE; Devlin JW; Murphy DJ; Murray B; Kamaleswaran R;
    Crit Care; 2023 May; 27(1):167. PubMed ID: 37131200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].
    Lin Y; Wu JY; Lin K; Hu YH; Kong GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer.
    Santos HGD; Zampieri FG; Normilio-Silva K; Silva GTD; Lima ACP; Cavalcanti AB; Chiavegatto Filho ADP
    J Crit Care; 2020 Feb; 55():73-78. PubMed ID: 31715534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute kidney injury enhances outcome prediction ability of sequential organ failure assessment score in critically ill patients.
    Chang CH; Fan PC; Chang MY; Tian YC; Hung CC; Fang JT; Yang CW; Chen YC
    PLoS One; 2014; 9(10):e109649. PubMed ID: 25279844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering of critically ill patients using an individualized learning approach enables dose optimization of mobilization in the ICU.
    Fuest KE; Ulm B; Daum N; Lindholz M; Lorenz M; Blobner K; Langer N; Hodgson C; Herridge M; Blobner M; Schaller SJ
    Crit Care; 2023 Jan; 27(1):1. PubMed ID: 36597110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarker Predictors of Adverse Acute Kidney Injury Outcomes in Critically Ill Patients: The Dublin Acute Biomarker Group Evaluation Study.
    McMahon BA; Galligan M; Redahan L; Martin T; Meaney E; Cotter EJ; Murphy N; Hannon C; Doran P; Marsh B; Nichol A; Murray PT
    Am J Nephrol; 2019; 50(1):19-28. PubMed ID: 31203271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study.
    Iwashyna TJ; Hodgson CL; Pilcher D; Bailey M; van Lint A; Chavan S; Bellomo R
    Lancet Respir Med; 2016 Jul; 4(7):566-573. PubMed ID: 27155770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-derived blood culture classification with both predictive and prognostic values in the intensive care unit: A retrospective cohort study.
    Zhang J; Liu W; Xiao W; Liu Y; Hua T; Yang M
    Intensive Crit Care Nurs; 2024 Feb; 80():103549. PubMed ID: 37804818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Consensus Clustering Approach for Patients with Lactic Acidosis in Intensive Care Units.
    Pattharanitima P; Thongprayoon C; Petnak T; Srivali N; Gembillo G; Kaewput W; Chesdachai S; Vallabhajosyula S; O'Corragain OA; Mao MA; Garovic VD; Qureshi F; Dillon JJ; Cheungpasitporn W
    J Pers Med; 2021 Nov; 11(11):. PubMed ID: 34834484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Severe vitamin D deficiency upon admission in critically ill patients is related to acute kidney injury and a poor prognosis.
    Zapatero A; Dot I; Diaz Y; Gracia MP; Pérez-Terán P; Climent C; Masclans JR; Nolla J
    Med Intensiva (Engl Ed); 2018 May; 42(4):216-224. PubMed ID: 28847615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain.
    Rodríguez A; Ruiz-Botella M; Martín-Loeches I; Jimenez Herrera M; Solé-Violan J; Gómez J; Bodí M; Trefler S; Papiol E; Díaz E; Suberviola B; Vallverdu M; Mayor-Vázquez E; Albaya Moreno A; Canabal Berlanga A; Sánchez M; Del Valle Ortíz M; Ballesteros JC; Martín Iglesias L; Marín-Corral J; López Ramos E; Hidalgo Valverde V; Vidaur Tello LV; Sancho Chinesta S; Gonzáles de Molina FJ; Herrero García S; Sena Pérez CC; Pozo Laderas JC; Rodríguez García R; Estella A; Ferrer R;
    Crit Care; 2021 Feb; 25(1):63. PubMed ID: 33588914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct phenotypes of hospitalized patients with hyperkalemia by machine learning consensus clustering and associated mortality risks.
    Thongprayoon C; Kattah AG; Mao MA; Keddis MT; Pattharanitima P; Vallabhajosyula S; Nissaisorakarn V; Erickson SB; Dillon JJ; Garovic VD; Cheungpasitporn W
    QJM; 2022 Jul; 115(7):442-449. PubMed ID: 34270780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relationship between postoperative immediate serum albumin level and postoperative acute kidney injury after major abdominal surgery in critically ill patients].
    Li W; Li N; Li S
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Aug; 33(8):955-961. PubMed ID: 34590563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy.
    Kang MW; Kim J; Kim DK; Oh KH; Joo KW; Kim YS; Han SS
    Crit Care; 2020 Feb; 24(1):42. PubMed ID: 32028984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.