BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 34104114)

  • 1. Controlled biointerfaces with biomimetic phosphorus-containing polymers.
    Hiranphinyophat S; Iwasaki Y
    Sci Technol Adv Mater; 2021 May; 22(1):301-316. PubMed ID: 34104114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces.
    Iwasaki Y; Ishihara K
    Sci Technol Adv Mater; 2012 Dec; 13(6):064101. PubMed ID: 27877525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic materials based on zwitterionic polymers toward human-friendly medical devices.
    Ishihara K
    Sci Technol Adv Mater; 2022; 23(1):498-524. PubMed ID: 36117516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel polymer biomaterials and interfaces inspired from cell membrane functions.
    Ishihara K; Goto Y; Takai M; Matsuno R; Inoue Y; Konno T
    Biochim Biophys Acta; 2011 Mar; 1810(3):268-75. PubMed ID: 20435095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Approach to Conjugated Polymers with Biomimetic Properties.
    Baek P; Voorhaar L; Barker D; Travas-Sejdic J
    Acc Chem Res; 2018 Jul; 51(7):1581-1589. PubMed ID: 29897228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications.
    Strasser P; Teasdale I
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32276516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone Mineral Affinity of Polyphosphodiesters.
    Iwasaki Y
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoassisted Surface Modification with Zwitterionic Phosphorylcholine Polymers for the Fabrication of Ideal Biointerfaces.
    Iwasaki Y
    Langmuir; 2023 Nov; 39(44):15417-15430. PubMed ID: 37899752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.
    Xu Y; Takai M; Ishihara K
    Ann Biomed Eng; 2010 Jun; 38(6):1938-53. PubMed ID: 20358288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.
    Leng C; Sun S; Zhang K; Jiang S; Chen Z
    Acta Biomater; 2016 Aug; 40():6-15. PubMed ID: 26923530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications.
    Zhang D; Xu X; Long X; Cheng K; Li J
    Biomater Sci; 2019 Sep; 7(10):3984-3999. PubMed ID: 31429424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorus-containing polymers: a great opportunity for the biomedical field.
    Monge S; Canniccioni B; Graillot A; Robin JJ
    Biomacromolecules; 2011 Jun; 12(6):1973-82. PubMed ID: 21553908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition.
    Ishihara K; Fukazawa K
    J Mater Chem B; 2022 May; 10(18):3397-3419. PubMed ID: 35389394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of organisms by biomimetic mineralization: A material incorporation strategy for biological modification.
    Zhao Y; Tang R
    Acta Biomater; 2021 Jan; 120():57-80. PubMed ID: 32629191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation into potential mechanisms promoting biocompatibility of polymeric biomaterials containing the phosphorylcholine moiety. A physicochemical and biological study.
    Parker AP; Reynolds PA; Lewis AL; Kirkwood L; Hughes LG
    Colloids Surf B Biointerfaces; 2005 Dec; 46(4):204-17. PubMed ID: 16337779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces.
    Hori K; Yoshimoto S; Yoshino T; Zako T; Hirao G; Fujita S; Nakamura C; Yamagishi A; Kamiya N
    J Biosci Bioeng; 2022 Mar; 133(3):195-207. PubMed ID: 34998688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorine-containing bio-inert polymers: Roles of intermediate water.
    Koguchi R; Jankova K; Tanaka M
    Acta Biomater; 2022 Jan; 138():34-56. PubMed ID: 34700043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales.
    Seetasang S; Xu Y
    J Mater Chem B; 2022 Apr; 10(14):2323-2337. PubMed ID: 35142776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate.
    Nakano H; Noguchi Y; Kakinoki S; Yamakawa M; Osaka I; Iwasaki Y
    ACS Appl Bio Mater; 2020 Feb; 3(2):1071-1078. PubMed ID: 35019309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.