These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 34104955)

  • 1. Identification of microRNAs and gene regulatory networks in cleft lip common in humans and mice.
    Yoshioka H; Li A; Suzuki A; Ramakrishnan SS; Zhao Z; Iwata J
    Hum Mol Genet; 2021 Sep; 30(19):1881-1893. PubMed ID: 34104955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sasa veitchii extracts protect phenytoin-induced cell proliferation inhibition in human lip mesenchymal cells through modulation of miR-27b-5p.
    Tsukiboshi Y; Ogata A; Noguchi A; Mikami Y; Yokota S; Ogata K; Yoshioka H
    Biomed Res; 2023; 44(2):73-80. PubMed ID: 37005285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-655-3p and microRNA-497-5p inhibit cell proliferation in cultured human lip cells through the regulation of genes related to human cleft lip.
    Gajera M; Desai N; Suzuki A; Li A; Zhang M; Jun G; Jia P; Zhao Z; Iwata J
    BMC Med Genomics; 2019 May; 12(1):70. PubMed ID: 31122291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse.
    Suzuki A; Yoshioka H; Summakia D; Desai NG; Jun G; Jia P; Loose DS; Ogata K; Gajera MV; Zhao Z; Iwata J
    BMC Genomics; 2019 Nov; 20(1):852. PubMed ID: 31727022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-374a, -4680, and -133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells.
    Suzuki A; Li A; Gajera M; Abdallah N; Zhang M; Zhao Z; Iwata J
    BMC Med Genomics; 2019 Jul; 12(1):93. PubMed ID: 31262291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical microRNAs and regulatory motifs in cleft palate identified by a conserved miRNA-TF-gene network approach in humans and mice.
    Li A; Jia P; Mallik S; Fei R; Yoshioka H; Suzuki A; Iwata J; Zhao Z
    Brief Bioinform; 2020 Jul; 21(4):1465-1478. PubMed ID: 31589286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenytoin Inhibits Cell Proliferation through microRNA-196a-5p in Mouse Lip Mesenchymal Cells.
    Yoshioka H; Ramakrishnan SS; Suzuki A; Iwata J
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based identification of critical regulators as putative drivers of human cleft lip.
    Li A; Qin G; Suzuki A; Gajera M; Iwata J; Jia P; Zhao Z
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):16. PubMed ID: 30704473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of key genes in cleft lip with or without cleft palate regulated by miR-199a-5p.
    Chen G; Li MX; Wang HX; Hong JW; Shen JY; Wang Q; Shi QM; Ge X; Ding Z; Zhang JP; Xu LC
    Int J Pediatr Otorhinolaryngol; 2018 Aug; 111():128-137. PubMed ID: 29958595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of microRNA 124-3p and microRNA 340-5p ameliorates retinoic acid-induced cleft palate in mice.
    Yoshioka H; Suzuki A; Iwaya C; Iwata J
    Development; 2022 May; 149(9):. PubMed ID: 35420127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate.
    Iwaya C; Suzuki A; Iwata J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional polymorphism in the pre-miR-146a gene is associated with the risk of nonsyndromic orofacial cleft.
    Pan Y; Li D; Lou S; Zhang C; Du Y; Jiang H; Zhang W; Ma L; Wang L
    Hum Mutat; 2018 May; 39(5):742-750. PubMed ID: 29484780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dexamethasone Suppresses Palatal Cell Proliferation through miR-130a-3p.
    Yoshioka H; Jun G; Suzuki A; Iwata J
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrative, genomic, transcriptomic and network-assisted study to identify genes associated with human cleft lip with or without cleft palate.
    Yan F; Dai Y; Iwata J; Zhao Z; Jia P
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):39. PubMed ID: 32241273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal MicroRNA-Gene Expression Network Related to Orofacial Clefts.
    Yan F; Simon LM; Suzuki A; Iwaya C; Jia P; Iwata J; Zhao Z
    J Dent Res; 2022 Oct; 101(11):1398-1407. PubMed ID: 35774010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular contribution to cleft palate production in cleft lip mice.
    Sasaki Y; Taya Y; Saito K; Fujita K; Aoba T; Fujiwara T
    Congenit Anom (Kyoto); 2014 May; 54(2):94-9. PubMed ID: 24206222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid.
    Yoshioka H; Mikami Y; Ramakrishnan SS; Suzuki A; Iwata J
    Front Cell Dev Biol; 2021; 9():621045. PubMed ID: 34178974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of plasma miRNA and related ceRNA network in non-syndromic cleft lip and/or palate.
    Tang J; Lian SB; Bai Y; Lv MM; Wen Y; Song QG
    Int J Pediatr Otorhinolaryngol; 2022 Nov; 162():111306. PubMed ID: 36087427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irf6-Related Gene Regulatory Network Involved in Palate and Lip Development.
    Dai J; Yu H; Si J; Fang B; Shen SG
    J Craniofac Surg; 2015 Jul; 26(5):1600-5. PubMed ID: 26086926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Expression of miR-378 in Nonsyndromic Cleft Lip and/or Cleft Palate: A Cogitation of Skewed Sex Ratio in Prevalence.
    Xu Y; Xie B; Shi J; Li J; Zhou C; Lu W; Xu F; He F
    Cleft Palate Craniofac J; 2021 Jan; 58(1):61-71. PubMed ID: 32580581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.