These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34105262)

  • 1. FeVO
    Chang S; Wang M; Wang CC; Fu X; Bi H; Zeng Q
    ChemSusChem; 2021 Jul; 14(14):3010-3017. PubMed ID: 34105262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered Ti-doped FeVO
    Zeng Q; Fu X; Chang S; Zhang Q; Xiong Z; Liu Y; Peng G; Li M
    J Colloid Interface Sci; 2021 Dec; 604():562-567. PubMed ID: 34274717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combinatorial Synthesis and High-Throughput Characterization of Fe-V-O Thin-Film Materials Libraries for Solar Water Splitting.
    Kumari S; Gutkowski R; Junqueira JRC; Kostka A; Hengge K; Scheu C; Schuhmann W; Ludwig A
    ACS Comb Sci; 2018 Sep; 20(9):544-553. PubMed ID: 30102852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Carbon Nitride Homojunction Photoelectrode for Solar-Driven Water Splitting.
    Lei Y; Si W; Wang Y; Tan H; Di L; Wang L; Liang J; Hou F
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6726-6734. PubMed ID: 36692988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector.
    Choi D; Nam SK; Kim K; Moon JH
    Angew Chem Int Ed Engl; 2019 May; 58(21):6891-6895. PubMed ID: 30937999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes.
    Zhang Y; Lv H; Zhang Z; Wang L; Wu X; Xu H
    Adv Mater; 2021 Apr; 33(15):e2008264. PubMed ID: 33690954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Optocatalytic Model for Semiconductor-Catalyst Water-Splitting Photoelectrodes Based on In Situ Optical Measurements on Operational Catalysts.
    Trotochaud L; Mills TJ; Boettcher SW
    J Phys Chem Lett; 2013 Mar; 4(6):931-5. PubMed ID: 26291358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
    Zong X; Thaweesak S; Xu H; Xing Z; Zou J; Lu GM; Wang L
    Phys Chem Chem Phys; 2013 Aug; 15(29):12314-21. PubMed ID: 23778329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploratory Study of Zn
    Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Water Oxidation Using Ta
    Higashi T; Nishiyama H; Otsuka Y; Kawase Y; Sasaki Y; Nakabayashi M; Katayama M; Minegishi T; Shibata N; Takanabe K; Yamada T; Domen K
    ChemSusChem; 2020 Apr; 13(8):1974-1978. PubMed ID: 32129007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of a Hydrogenase in a Lead Halide Perovskite Photoelectrode for Tandem Solar Water Splitting.
    Edwardes Moore E; Andrei V; Zacarias S; Pereira IAC; Reisner E
    ACS Energy Lett; 2020 Jan; 5(1):232-237. PubMed ID: 32010793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New BiVO
    Wang S; Chen P; Bai Y; Yun JH; Liu G; Wang L
    Adv Mater; 2018 May; 30(20):e1800486. PubMed ID: 29602201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile and Large-Area Preparation of Porous Ag
    Cao Q; Yu J; Yuan K; Zhong M; Delaunay JJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19507-19512. PubMed ID: 28560876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferred monolayer MoS
    Hassan MA; Kim MW; Johar MA; Waseem A; Kwon MK; Ryu SW
    Sci Rep; 2019 Dec; 9(1):20141. PubMed ID: 31882920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Annealing Atmosphere Gases on the Growth and Photocurrent Performance of CuO Films Grown on FTO Substrate.
    Xia W; Luo M; Zeng X; Yang J; Dong J; Xu Q; Zhang Z
    ACS Omega; 2018 Sep; 3(9):11354-11361. PubMed ID: 31459243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Deposition of Crystalline Ta
    Hajibabaei H; Little DJ; Pandey A; Wang D; Mi Z; Hamann TW
    ACS Appl Mater Interfaces; 2019 May; 11(17):15457-15466. PubMed ID: 30964262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.