These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34105300)

  • 1. Abuse-Tolerant Electrolytes for Lithium-Ion Batteries.
    Chen Z; Chao Y; Li W; Wallace GG; Bussell T; Ding J; Wang C
    Adv Sci (Weinh); 2021 Jun; 8(11):e2003694. PubMed ID: 34105300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research Progresses of Liquid Electrolytes in Lithium-Ion Batteries.
    Liu YK; Zhao CZ; Du J; Zhang XQ; Chen AB; Zhang Q
    Small; 2023 Feb; 19(8):e2205315. PubMed ID: 36470676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.
    Liu K; Liu W; Qiu Y; Kong B; Sun Y; Chen Z; Zhuo D; Lin D; Cui Y
    Sci Adv; 2017 Jan; 3(1):e1601978. PubMed ID: 28097221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review on Polymer-Based Composite Electrolytes for Lithium Batteries.
    Yao P; Yu H; Ding Z; Liu Y; Lu J; Lavorgna M; Wu J; Liu X
    Front Chem; 2019; 7():522. PubMed ID: 31440498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives.
    Kalhoff J; Eshetu GG; Bresser D; Passerini S
    ChemSusChem; 2015 Jul; 8(13):2154-75. PubMed ID: 26075350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Effect and Mechanism Analysis of Flame-Retardant Modified Polymer Electrolyte for Lithium-Ion Battery.
    Wu ZH; Huang AC; Tang Y; Yang YP; Liu YC; Li ZP; Zhou HL; Huang CF; Xing ZX; Shu CM; Jiang JC
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34064015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges.
    Hu Y; Yu L; Meng T; Zhou S; Sui X; Hu X
    Chem Asian J; 2022 Dec; 17(23):e202200794. PubMed ID: 36177983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges for Safe Electrolytes Applied in Lithium-Ion Cells-A Review.
    Pigłowska M; Kurc B; Galiński M; Fuć P; Kamińska M; Szymlet N; Daszkiewicz P
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries.
    Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolyte Therapy for Improving the Performance of LiNi
    Zou Z; Xu H; Zhang H; Tang Y; Cui G
    ACS Appl Mater Interfaces; 2020 May; 12(19):21368-21385. PubMed ID: 32293860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices.
    Xu C; Yang G; Wu D; Yao M; Xing C; Zhang J; Zhang H; Li F; Feng Y; Qi S; Zhuo M; Ma J
    Chem Asian J; 2021 Mar; 16(6):549-562. PubMed ID: 33377601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries.
    Badi N; Theodore AM; Alghamdi SA; Al-Aoh HA; Lakhouit A; Singh PK; Norrrahim MNF; Nath G
    Polymers (Basel); 2022 Jul; 14(15):. PubMed ID: 35956616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong Chemical Interaction between Lithium Polysulfides and Flame-Retardant Polyphosphazene for Lithium-Sulfur Batteries with Enhanced Safety and Electrochemical Performance.
    Chen P; Wu Z; Guo T; Zhou Y; Liu M; Xia X; Sun J; Lu L; Ouyang X; Wang X; Fu Y; Zhu J
    Adv Mater; 2021 Mar; 33(9):e2007549. PubMed ID: 33506541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies.
    Zhu Q; Ye C; Mao D
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries.
    Hoang Huy VP; So S; Hur J
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33804462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyethylene Oxide (PEO) Provides Bridges to Silica Nanoparticles to Form a Shear Thickening Electrolyte for High Performance Impact Resistant Lithium-ion Batteries.
    Chen Z; Chao Y; Sayyar S; Tian T; Wang K; Xu Y; Wallace G; Ding J; Wang C
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302844. PubMed ID: 37544891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Electrolytes Recycling From Spent Lithium-Ion Batteries.
    Zhang R; Shi X; Esan OC; An L
    Glob Chall; 2022 Dec; 6(12):2200050. PubMed ID: 36532239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.