These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34105528)
1. Rapid isolation of extracellular vesicles from diverse biofluid matrices Jackson KK; Powell RR; Bruce TF; Marcus RK Analyst; 2021 Jun; 146(13):4314-4325. PubMed ID: 34105528 [TBL] [Abstract][Full Text] [Related]
2. Solid-phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Jackson KK; Powell RR; Bruce TF; Marcus RK Anal Bioanal Chem; 2020 Jul; 412(19):4713-4724. PubMed ID: 32468278 [TBL] [Abstract][Full Text] [Related]
3. A rapid capillary-channeled polymer (C-CP) fiber spin-down tip approach for the isolation of plant-derived extracellular vesicles (PDEVs) from 20 common fruit and vegetable sources. Jackson KK; Mata C; Marcus RK Talanta; 2023 Jan; 252():123779. PubMed ID: 35994804 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the capillary-channeled polymer (C-CP) fiber spin-down tip approach to traditional methods for the isolation of extracellular vesicles from human urine. Jackson KK; Powell RR; Marcus RK; Bruce TF Anal Bioanal Chem; 2022 May; 414(13):3813-3825. PubMed ID: 35412060 [TBL] [Abstract][Full Text] [Related]
5. Rapid separation of blood plasma exosomes from low-density lipoproteins via a hydrophobic interaction chromatography method on a polyester capillary-channeled polymer fiber phase. Huang S; Ji X; Jackson KK; Lubman DM; Ard MB; Bruce TF; Marcus RK Anal Chim Acta; 2021 Jul; 1167():338578. PubMed ID: 34049630 [TBL] [Abstract][Full Text] [Related]
6. Rapid isolation and quantification of extracellular vesicles from suspension-adapted human embryonic kidney cells using capillary-channeled polymer fiber spin-down tips. Jackson KK; Marcus RK Electrophoresis; 2023 Jan; 44(1-2):190-202. PubMed ID: 35973415 [TBL] [Abstract][Full Text] [Related]
7. Isolation and quantification of human urinary exosomes using a Tween-20 elution solvent from polyester, capillary-channeled polymer fiber columns. Bin Islam MK; Marcus RK Anal Chim Acta; 2024 Nov; 1329():343242. PubMed ID: 39396305 [TBL] [Abstract][Full Text] [Related]
8. In-line coupling of capillary-channeled polymer fiber columns with optical absorbance and multi-angle light scattering detection for the isolation and characterization of exosomes. Wysor SK; Marcus RK Anal Bioanal Chem; 2024 Jun; 416(14):3325-3333. PubMed ID: 38592443 [TBL] [Abstract][Full Text] [Related]
9. Isolation and quantitation of exosomes isolated from human plasma via hydrophobic interaction chromatography using a polyester, capillary-channeled polymer fiber phase. Wang L; Bruce TF; Huang S; Marcus RK Anal Chim Acta; 2019 Nov; 1082():186-193. PubMed ID: 31472708 [TBL] [Abstract][Full Text] [Related]
10. Isolation and quantification of human urinary exosomes by hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber stationary phase. Huang S; Wang L; Bruce TF; Marcus RK Anal Bioanal Chem; 2019 Oct; 411(25):6591-6601. PubMed ID: 31372698 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of exosome loading characteristics in their purification via a glycerol-assisted hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber phase. Huang S; Wang L; Bruce TF; Marcus RK Biotechnol Prog; 2020 Sep; 36(5):e2998. PubMed ID: 32246744 [TBL] [Abstract][Full Text] [Related]
12. Exosome isolation and purification via hydrophobic interaction chromatography using a polyester, capillary-channeled polymer fiber phase. Bruce TF; Slonecki TJ; Wang L; Huang S; Powell RR; Marcus RK Electrophoresis; 2019 Feb; 40(4):571-581. PubMed ID: 30548636 [TBL] [Abstract][Full Text] [Related]
13. A method for the isolation and enrichment of purified bovine milk exosomes. Vaswani K; Koh YQ; Almughlliq FB; Peiris HN; Mitchell MD Reprod Biol; 2017 Dec; 17(4):341-348. PubMed ID: 29030127 [TBL] [Abstract][Full Text] [Related]
14. Capillary-channeled polymer (C-CP) fibers for the rapid extraction of proteins from urine matrices prior to detection with MALDI-MS. Manard BT; Jones SM; Marcus RK Proteomics Clin Appl; 2015 Jun; 9(5-6):522-30. PubMed ID: 25450308 [TBL] [Abstract][Full Text] [Related]
15. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Lee SS; Won JH; Lim GJ; Han J; Lee JY; Cho KO; Bae YK Cell Commun Signal; 2019 Aug; 17(1):95. PubMed ID: 31416445 [TBL] [Abstract][Full Text] [Related]
16. Rapid isolation of lentivirus particles from cell culture media via a hydrophobic interaction chromatography method on a polyester, capillary-channeled polymer fiber stationary phase. Huang S; Bruce TF; Ding H; Wei Y; Marcus RK Anal Bioanal Chem; 2021 May; 413(11):2985-2994. PubMed ID: 33608753 [TBL] [Abstract][Full Text] [Related]
17. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Kooijmans SAA; Schiffelers RM; Zarovni N; Vago R Pharmacol Res; 2016 Sep; 111():487-500. PubMed ID: 27394168 [TBL] [Abstract][Full Text] [Related]
18. Solid phase extraction of proteins from buffer solutions employing capillary-channeled polymer (C-CP) fibers as the stationary phase. Burdette CQ; Marcus RK Analyst; 2013 Feb; 138(4):1098-106. PubMed ID: 23223274 [TBL] [Abstract][Full Text] [Related]
19. Exosomes are secreted at similar densities by M21 and PC3 human cancer cells and show paclitaxel solubility. Fisher WS; Tchounwou C; Wei S; Roberts L; Ewert KK; Safinya CR Biochim Biophys Acta Biomembr; 2022 Apr; 1864(4):183841. PubMed ID: 34953781 [TBL] [Abstract][Full Text] [Related]
20. Quantitative Recoveries of Exosomes and Monoclonal Antibodies from Chinese Hamster Ovary Cell Cultures by Use of a Single, Integrated Two-Dimensional Liquid Chromatography Method. Wysor SK; Marcus RK Anal Chem; 2023 Dec; 95(48):17886-17893. PubMed ID: 37995145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]