These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 34105592)

  • 1. 3D printed architected conducting polymer hydrogels.
    Jordan RS; Frye J; Hernandez V; Prado I; Giglio A; Abbasizadeh N; Flores-Martinez M; Shirzad K; Xu B; Hill IM; Wang Y
    J Mater Chem B; 2021 Sep; 9(35):7258-7270. PubMed ID: 34105592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of conducting polymers.
    Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X
    Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
    Xu C; Dai G; Hong Y
    Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Crosslinking, Reversible Phase Transition, and 3D Printing of Hyaluronic Acid Hydrogels via Dynamic Coordination of Innate Carboxyl Groups and Metallic Ions.
    Xu C; Hung C; Cao Y; Liu HH
    ACS Appl Bio Mater; 2021 Mar; 4(3):2408-2428. PubMed ID: 35014361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.
    Zhou T; Yuk H; Hu F; Wu J; Tian F; Roh H; Shen Z; Gu G; Xu J; Lu B; Zhao X
    Nat Mater; 2023 Jul; 22(7):895-902. PubMed ID: 37322141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.
    Li G; Huang K; Deng J; Guo M; Cai M; Zhang Y; Guo CF
    Adv Mater; 2022 Apr; 34(15):e2200261. PubMed ID: 35170097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed, Solid-State Conductive Ionoelastomer as a Generic Building Block for Tactile Applications.
    Zhang C; Zheng H; Sun J; Zhou Y; Xu W; Dai Y; Mo J; Wang Z
    Adv Mater; 2022 Jan; 34(2):e2105996. PubMed ID: 34734449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
    Bootsma K; Fitzgerald MM; Free B; Dimbath E; Conjerti J; Reese G; Konkolewicz D; Berberich JA; Sparks JL
    J Mech Behav Biomed Mater; 2017 Jun; 70():84-94. PubMed ID: 27492734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.
    Jakus AE; Geisendorfer NR; Lewis PL; Shah RN
    Acta Biomater; 2018 May; 72():94-109. PubMed ID: 29601901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics.
    Deo KA; Jaiswal MK; Abasi S; Lokhande G; Bhunia S; Nguyen TU; Namkoong M; Darvesh K; Guiseppi-Elie A; Tian L; Gaharwar AK
    ACS Nano; 2022 Jun; 16(6):8798-8811. PubMed ID: 35675588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroconductive natural polymer-based hydrogels.
    Shi Z; Gao X; Ullah MW; Li S; Wang Q; Yang G
    Biomaterials; 2016 Dec; 111():40-54. PubMed ID: 27721086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.