BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34105961)

  • 1. How Deep Learning Tools Can Help Protein Engineers Find Good Sequences.
    Osadchy M; Kolodny R
    J Phys Chem B; 2021 Jun; 125(24):6440-6450. PubMed ID: 34105961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer-based deep learning for predicting protein properties in the life sciences.
    Chandra A; Tünnermann L; Löfstedt T; Gratz R
    Elife; 2023 Jan; 12():. PubMed ID: 36651724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Protein Design with Deep Learning Neural Networks.
    Wang J; Cao H; Zhang JZH; Qi Y
    Sci Rep; 2018 Apr; 8(1):6349. PubMed ID: 29679026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new age in protein design empowered by deep learning.
    Khakzad H; Igashov I; Schneuing A; Goverde C; Bronstein M; Correia B
    Cell Syst; 2023 Nov; 14(11):925-939. PubMed ID: 37972559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction.
    Walters WP; Barzilay R
    Acc Chem Res; 2021 Jan; 54(2):263-270. PubMed ID: 33370107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNA-DL: A Deep Learning Approach to Improve tRNAscan-SE Prediction Results.
    Gao X; Wei Z; Hakonarson H
    Hum Hered; 2018; 83(3):163-172. PubMed ID: 30685762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins.
    Yu CH; Chen W; Chiang YH; Guo K; Martin Moldes Z; Kaplan DL; Buehler MJ
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1156-1165. PubMed ID: 35129957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction.
    Wang Z; Combs SA; Brand R; Calvo MR; Xu P; Price G; Golovach N; Salawu EO; Wise CJ; Ponnapalli SP; Clark PM
    Sci Rep; 2022 Apr; 12(1):6832. PubMed ID: 35477726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning to Generate
    Colby SM; Nuñez JR; Hodas NO; Corley CD; Renslow RR
    Anal Chem; 2020 Jan; 92(2):1720-1729. PubMed ID: 31661259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Searching for protein variants with desired properties using deep generative models.
    Li Y; Yao Y; Xia Y; Tang M
    BMC Bioinformatics; 2023 Jul; 24(1):297. PubMed ID: 37480001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences.
    Hu S; Ma R; Wang H
    PLoS One; 2019; 14(11):e0225317. PubMed ID: 31725778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-task learning for the prediction of wind power ramp events with deep neural networks.
    Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C
    Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CProMG: controllable protein-oriented molecule generation with desired binding affinity and drug-like properties.
    Li JN; Yang G; Zhao PC; Wei XX; Shi JY
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i326-i336. PubMed ID: 37387157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning in Drug Target Interaction Prediction: Current and Future Perspectives.
    Abbasi K; Razzaghi P; Poso A; Ghanbari-Ara S; Masoudi-Nejad A
    Curr Med Chem; 2021; 28(11):2100-2113. PubMed ID: 32895036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating deep learning with memcomputing.
    Manukian H; Traversa FL; Di Ventra M
    Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.