BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34106210)

  • 61. β-alanine supplementation induces taurine depletion and causes alterations of the retinal nerve fiber layer and axonal transport by retinal ganglion cells.
    García-Ayuso D; Di Pierdomenico J; Valiente-Soriano FJ; Martínez-Vacas A; Agudo-Barriuso M; Vidal-Sanz M; Picaud S; Villegas-Pérez MP
    Exp Eye Res; 2019 Nov; 188():107781. PubMed ID: 31473259
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Microglia mediate non-cell-autonomous cell death of retinal ganglion cells.
    Takeda A; Shinozaki Y; Kashiwagi K; Ohno N; Eto K; Wake H; Nabekura J; Koizumi S
    Glia; 2018 Nov; 66(11):2366-2384. PubMed ID: 30375063
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Relationship between pattern electroretinogram, standard automated perimetry, and optic nerve structural assessments.
    Sehi M; Pinzon-Plazas M; Feuer WJ; Greenfield DS
    J Glaucoma; 2009; 18(8):608-17. PubMed ID: 19826390
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Longitudinal evaluation of retinal ganglion cell function and IOP in the DBA/2J mouse model of glaucoma.
    Saleh M; Nagaraju M; Porciatti V
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4564-72. PubMed ID: 17898279
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electroretinography in idiopathic intracranial hypertension: comparison of the pattern ERG and the photopic negative response.
    Park JC; Moss HE; McAnany JJ
    Doc Ophthalmol; 2018 Feb; 136(1):45-55. PubMed ID: 29139045
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficacy of N95 amplitude of pattern electroretinogram measured from baseline to N95 trough in the traumatic optic neuropathy.
    Kim KH; Kim US
    Jpn J Ophthalmol; 2019 May; 63(3):284-288. PubMed ID: 30848395
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina.
    Galindo-Romero C; Harun-Or-Rashid M; Jiménez-López M; Vidal-Sanz M; Agudo-Barriuso M; Hallböök F
    PLoS One; 2016; 11(9):e0161862. PubMed ID: 27611432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure.
    Wilsey L; Gowrisankaran S; Cull G; Hardin C; Burgoyne CF; Fortune B
    Doc Ophthalmol; 2017 Apr; 134(2):111-128. PubMed ID: 28243926
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry.
    Hokazono K; Raza AS; Oyamada MK; Hood DC; Monteiro ML
    Doc Ophthalmol; 2013 Dec; 127(3):201-15. PubMed ID: 23892551
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exacerbation of blast-induced ocular trauma by an immune response.
    Bricker-Anthony C; Hines-Beard J; D'Surney L; Rex TS
    J Neuroinflammation; 2014 Nov; 11(1):192. PubMed ID: 25472427
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Longitudinal fundus and retinal studies with SD-OCT: a comparison of five mouse inbred strains.
    Puk O; de Angelis MH; Graw J
    Mamm Genome; 2013 Jun; 24(5-6):198-205. PubMed ID: 23681115
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas.
    Nadal-Nicolás FM; Jiménez-López M; Sobrado-Calvo P; Nieto-López L; Cánovas-Martínez I; Salinas-Navarro M; Vidal-Sanz M; Agudo M
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3860-8. PubMed ID: 19264888
    [TBL] [Abstract][Full Text] [Related]  

  • 73. AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation.
    Ha Y; Liu W; Liu H; Zhu S; Xia F; Gerson JE; Azhar NA; Tilton RG; Motamedi M; Kayed R; Zhang W
    Invest Ophthalmol Vis Sci; 2018 Sep; 59(11):4670-4682. PubMed ID: 30267089
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells.
    Kim BJ; Silverman SM; Liu Y; Wordinger RJ; Pang IH; Clark AF
    Mol Neurodegener; 2016 Apr; 11():30. PubMed ID: 27098079
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Blast Exposure Induces Ocular Functional Changes with Increasing Blast Over-pressures in a Rat Model.
    Zhu Y; Howard JT; Edsall PR; Morris RB; Lund BJ; Cleland JM
    Curr Eye Res; 2019 Jul; 44(7):770-780. PubMed ID: 30947563
    [No Abstract]   [Full Text] [Related]  

  • 76. In vivo evaluation of retinal ganglion cells and optic nerve's integrity in large animals by multi-modality analysis.
    Zhang Y; Zhang S; Xia Y; Ji Y; Jiang W; Li M; Huang H; Xu M; Sun J; Ye Q; Hu Y; Wu W
    Exp Eye Res; 2020 Aug; 197():108117. PubMed ID: 32598972
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells.
    Badea TC; Cahill H; Ecker J; Hattar S; Nathans J
    Neuron; 2009 Mar; 61(6):852-64. PubMed ID: 19323995
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spectral domain optical coherence tomography in mouse models of retinal degeneration.
    Huber G; Beck SC; Grimm C; Sahaboglu-Tekgoz A; Paquet-Durand F; Wenzel A; Humphries P; Redmond TM; Seeliger MW; Fischer MD
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5888-95. PubMed ID: 19661229
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nerve fibre layer degeneration and retinal ganglion cell loss long term after optic nerve crush or transection in adult mice.
    Sánchez-Migallón MC; Valiente-Soriano FJ; Salinas-Navarro M; Nadal-Nicolás FM; Jiménez-López M; Vidal-Sanz M; Agudo-Barriuso M
    Exp Eye Res; 2018 May; 170():40-50. PubMed ID: 29452106
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A Mouse Model of Repetitive Blast Traumatic Brain Injury Reveals Post-Trauma Seizures and Increased Neuronal Excitability.
    Bugay V; Bozdemir E; Vigil FA; Chun SH; Holstein DM; Elliott WR; Sprague CJ; Cavazos JE; Zamora DO; Rule G; Shapiro MS; Lechleiter JD; Brenner R
    J Neurotrauma; 2020 Jan; 37(2):248-261. PubMed ID: 31025597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.