BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34106316)

  • 1. [Corneal wound healing-Pathophysiology and principles].
    Brockmann T; Walckling M; Brockmann C; Fuchsluger TMA; Pleyer U
    Ophthalmologe; 2021 Nov; 118(11):1167-1177. PubMed ID: 34106316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Corneal wound healing-Pharmacological treatment].
    Brockmann T; Simon A; Brockmann C; Fuchsluger TA; Pleyer U; Walckling M
    Ophthalmologie; 2024 Mar; 121(3):245-258. PubMed ID: 38411733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Epithelial Abrasion Model for Studying Corneal Wound Healing.
    Akowuah PK; De La Cruz A; Smith CW; Rumbaut RE; Burns AR
    J Vis Exp; 2021 Dec; (178):. PubMed ID: 35037655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular Vesicles in Corneal Fibrosis/Scarring.
    Yeung V; Boychev N; Farhat W; Ntentakis DP; Hutcheon AEK; Ross AE; Ciolino JB
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal fibrotic wound repair.
    Schultz G
    Br J Ophthalmol; 2003 Oct; 87(10):1200. PubMed ID: 14507745
    [No Abstract]   [Full Text] [Related]  

  • 6. The myofibroblast, biological activities and roles in eye repair and fibrosis. A focus on healing mechanisms in avascular cornea.
    Rocher M; Robert PY; Desmoulière A
    Eye (Lond); 2020 Feb; 34(2):232-240. PubMed ID: 31767967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of in vitro model of corneal scar pathophysiology.
    Chawla S; Ghosh S
    J Cell Physiol; 2018 May; 233(5):3817-3830. PubMed ID: 28657193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouse Models of Corneal Scarring.
    Rittié L; Hutcheon AEK; Zieske JD
    Methods Mol Biol; 2017; 1627():117-122. PubMed ID: 28836198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of nanomedicine targeting scar-forming myofibroblasts to attenuate corneal scarring and haze.
    Ibrahim Al-Mashahedah AM; Kanwar RK; Kanwar JR
    Nanomedicine (Lond); 2019 Apr; 14(8):1049-1072. PubMed ID: 30901304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury.
    Yu F; Gong D; Yan D; Wang H; Witman N; Lu Y; Fu W; Fu Y
    Mol Ther; 2023 Aug; 31(8):2454-2471. PubMed ID: 37165618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image-Based Longitudinal Characterization of Corneal Wound to Understand the Role of Sphingosine-1-Phosphate.
    Basu SK; Mandal N
    Methods Mol Biol; 2023; 2625():337-345. PubMed ID: 36653655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chicken cornea as a model of wound healing and neuronal re-innervation.
    Ritchey ER; Code K; Zelinka CP; Scott MA; Fischer AJ
    Mol Vis; 2011; 17():2440-54. PubMed ID: 21976955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human cornea-derived extracellular matrix hydrogel for prevention of post-traumatic corneal scarring: A translational approach.
    Chameettachal S; Venuganti A; Parekh Y; Prasad D; Joshi VP; Vashishtha A; Basu S; Singh V; Bokara KK; Pati F
    Acta Biomater; 2023 Nov; 171():289-307. PubMed ID: 37683964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice.
    Saika S; Yamanaka O; Okada Y; Miyamoto T; Kitano A; Flanders KC; Ohnishi Y; Nakajima Y; Kao WW; Ikeda K
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C75-86. PubMed ID: 17625041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental modeling of cornea wound healing in diabetes: clinical applications and beyond.
    Bu Y; Shih KC; Kwok SS; Chan YK; Lo AC; Chan TCY; Jhanji V; Tong L
    BMJ Open Diabetes Res Care; 2019; 7(1):e000779. PubMed ID: 31803484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation.
    Huang J; Jiang T; Li J; Qie J; Cheng X; Wang Y; Zhou T; Liu J; Han H; Yao K; Yu L
    Adv Healthc Mater; 2024 Feb; 13(5):e2302889. PubMed ID: 37988231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NBL1 Reduces Corneal Fibrosis and Scar Formation after Wounding.
    Tsai CH; Liu E; Phan A; Lu KL; Mei H
    Biomolecules; 2023 Oct; 13(11):. PubMed ID: 38002252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing.
    Shi L; Chang Y; Yang Y; Zhang Y; Yu FS; Wu X
    PLoS One; 2012; 7(2):e32128. PubMed ID: 22363806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connective tissue growth factor in retrocorneal membranes and corneal scars.
    Wunderlich K; Senn BC; Reiser P; Pech M; Flammer J; Meyer P
    Ophthalmologica; 2000; 214(5):341-6. PubMed ID: 10965248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study to test the efficacy of Mesenchymal Stem Cells in reducing corneal scarring in an ex-vivo organ culture model.
    Rose JS; Lalgudi S; Joshua A; Paul J; Thambaiah A; Wankhar S; Chacko G; Kuriakose T; Korah S
    Exp Eye Res; 2020 Jan; 190():107891. PubMed ID: 31812437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.