These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34106362)

  • 1. Hemolysis estimation in turbulent flow for the FDA critical path initiative centrifugal blood pump.
    Avci M; Heck M; O'Rear EA; Papavassiliou DV
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1709-1722. PubMed ID: 34106362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow-Field Simulations and Hemolysis Estimates for the Food and Drug Administration Critical Path Initiative Centrifugal Blood Pump.
    Heck ML; Yen A; Snyder TA; O'Rear EA; Papavassiliou DV
    Artif Organs; 2017 Oct; 41(10):E129-E140. PubMed ID: 28168706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of eddy length scale on mechanical loading of blood cells in turbulent flow.
    Dooley PN; Quinlan NJ
    Ann Biomed Eng; 2009 Dec; 37(12):2449-58. PubMed ID: 19757062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Approach for Assessing Turbulent Flow Damage to Blood in Medical Devices.
    Ozturk M; Papavassiliou DV; O'Rear EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27760246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis.
    Kameneva MV; Burgreen GW; Kono K; Repko B; Antaki JF; Umezu M
    ASAIO J; 2004; 50(5):418-23. PubMed ID: 15497379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic simulation of the FDA centrifugal blood pump benchmark.
    Karimi MS; Razzaghi P; Raisee M; Hendrick P; Nourbakhsh A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1871-1887. PubMed ID: 34191187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B; Konnigk L; Wurm FH
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the representation of effective stress for computing hemolysis.
    Wu P; Gao Q; Hsu PL
    Biomech Model Mechanobiol; 2019 Jun; 18(3):665-679. PubMed ID: 30604300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.
    Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I
    Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of turbulent viscous shear stress on red blood cell hemolysis.
    Yen JH; Chen SF; Chern MK; Lu PC
    J Artif Organs; 2014 Jun; 17(2):178-85. PubMed ID: 24619800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rethinking turbulence in blood.
    Antiga L; Steinman DA
    Biorheology; 2009; 46(2):77-81. PubMed ID: 19458411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.
    Aziz A; Werner BC; Epting KL; Agosti CD; Curtis WR
    Ann Biomed Eng; 2007 Dec; 35(12):2108-20. PubMed ID: 17909969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.