These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34106499)

  • 1. Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands.
    McCarney EP; Lovitt JI; Gunnlaugsson T
    Chemistry; 2021 Aug; 27(47):12052-12057. PubMed ID: 34106499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Self-Templated 2,6-Bis(1,2,3-triazol-4-yl)pyridine [2]Catenanes by Triazolyl Hydrogen Bonding: Selective Anion Hosts for Phosphate.
    Byrne JP; Blasco S; Aletti AB; Hessman G; Gunnlaugsson T
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8938-43. PubMed ID: 27295556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrocyclic
    McCarney EP; McCarthy WJ; Lovitt JI; Gunnlaugsson T
    Org Biomol Chem; 2021 Dec; 19(46):10189-10200. PubMed ID: 34788352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotaxane and catenane host structures for sensing charged guest species.
    Langton MJ; Beer PD
    Acc Chem Res; 2014 Jul; 47(7):1935-49. PubMed ID: 24708030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically selflocked chiral gemini-catenanes.
    Li SH; Zhang HY; Xu X; Liu Y
    Nat Commun; 2015 Jul; 6():7590. PubMed ID: 26126502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taco complex templated syntheses of a cryptand/paraquat [2]rotaxane and a [2]catenane by olefin metathesis.
    Li S; Liu M; Zheng B; Zhu K; Wang F; Li N; Zhao XL; Huang F
    Org Lett; 2009 Aug; 11(15):3350-3. PubMed ID: 19572601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active metal template synthesis of [2]catenanes.
    Goldup SM; Leigh DA; Long T; McGonigal PR; Symes MD; Wu J
    J Am Chem Soc; 2009 Nov; 131(43):15924-9. PubMed ID: 19807083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes.
    Leigh DA; Lusby PJ; McBurney RT; Morelli A; Slawin AM; Thomson AR; Walker DB
    J Am Chem Soc; 2009 Mar; 131(10):3762-71. PubMed ID: 19275264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducing and Switching the Handedness of Polyacetylenes with Topologically Chiral [2]Catenane Pendants.
    Wang Y; Zhang X; Huang CB; Hu L; Wang XQ; Wang W; Yang HB
    Angew Chem Int Ed Engl; 2024 Jun; ():e202408271. PubMed ID: 38837513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes.
    Cui Z; Mu QS; Gao X; Jin GX
    J Am Chem Soc; 2023 Jan; 145(1):725-731. PubMed ID: 36550680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topologically Controlled Syntheses of Unimolecular Oligo[
    Colley ND; Nosiglia MA; Tran SL; Harlan GH; Chang C; Li R; Delawder AO; Zhang Y; Barnes JC
    ACS Cent Sci; 2022 Dec; 8(12):1672-1682. PubMed ID: 36589894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion templated assembly of mechanically interlocked structures.
    Vickers MS; Beer PD
    Chem Soc Rev; 2007 Feb; 36(2):211-25. PubMed ID: 17264924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines.
    Byrne JP; Martínez-Calvo M; Peacock RD; Gunnlaugsson T
    Chemistry; 2016 Jan; 22(2):486-90. PubMed ID: 26555573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions.
    Lincheneau C; Jean-Denis B; Gunnlaugsson T
    Chem Commun (Camb); 2014 Mar; 50(22):2857-60. PubMed ID: 24496247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-templated subcomponent self-assembly of macrocycles, catenanes, and rotaxanes.
    Browne C; Ronson TK; Nitschke JR
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10701-5. PubMed ID: 25139572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane.
    Caprice K; Pál D; Besnard C; Galmés B; Frontera A; Cougnon FBL
    J Am Chem Soc; 2021 Aug; 143(31):11957-11962. PubMed ID: 34323081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calix[4]arene-based bis[2]catenanes: synthesis and chiral resolution.
    Molokanova O; Bogdan A; Vysotsky MO; Bolte M; Ikai T; Okamoto Y; Böhmer V
    Chemistry; 2007; 13(21):6157-70. PubMed ID: 17465427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catenane and Rotaxane Synthesis from Cucurbit[6]uril-Mediated Azide-Alkyne Cycloaddition.
    Tse YC; Au-Yeung HY
    Chem Asian J; 2023 Sep; 18(17):e202300290. PubMed ID: 37460745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective Self-Assembly of Complex Chiral Radial [5]Catenanes Using Half-Sandwich Rhodium/Iridium Building Blocks.
    Cui Z; Gao X; Lin YJ; Jin GX
    J Am Chem Soc; 2022 Feb; 144(5):2379-2386. PubMed ID: 35080385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles.
    Au-Yeung HY; Yee CC; Hung Ng AW; Hu K
    Inorg Chem; 2018 Apr; 57(7):3475-3485. PubMed ID: 29227636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.