These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 34106694)
1. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Zhu Y; Skerlos S; Xu M; Cooper DR Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694 [TBL] [Abstract][Full Text] [Related]
2. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study. Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254 [TBL] [Abstract][Full Text] [Related]
3. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R; Kamath D; Anctil A J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453 [TBL] [Abstract][Full Text] [Related]
4. Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet. Woody M; Vaishnav P; Craig MT; Keoleian GA Environ Sci Technol; 2022 Sep; 56(18):13391-13397. PubMed ID: 36018721 [TBL] [Abstract][Full Text] [Related]
5. A Dynamic Fleet Model of U.S Light-Duty Vehicle Lightweighting and Associated Greenhouse Gas Emissions from 2016 to 2050. Milovanoff A; Kim HC; De Kleine R; Wallington TJ; Posen ID; MacLean HL Environ Sci Technol; 2019 Feb; 53(4):2199-2208. PubMed ID: 30682256 [TBL] [Abstract][Full Text] [Related]
6. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles. Wu D; Guo F; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE Environ Sci Technol; 2019 Sep; 53(18):10560-10570. PubMed ID: 31336049 [TBL] [Abstract][Full Text] [Related]
7. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267 [TBL] [Abstract][Full Text] [Related]
8. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387 [TBL] [Abstract][Full Text] [Related]
9. Potential for Electrified Vehicles to Contribute to U.S. Petroleum and Climate Goals and Implications for Advanced Biofuels. Meier PJ; Cronin KR; Frost EA; Runge TM; Dale BE; Reinemann DJ; Detlor J Environ Sci Technol; 2015 Jul; 49(14):8277-86. PubMed ID: 26086692 [TBL] [Abstract][Full Text] [Related]
10. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393 [TBL] [Abstract][Full Text] [Related]
11. A life-cycle comparison of alternative automobile fuels. MacLean HL; Lave LB; Lankey R; Joshi S J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305 [TBL] [Abstract][Full Text] [Related]
12. Decarbonization potential of electrifying 50% of U.S. light-duty vehicle sales by 2030. Woody M; Keoleian GA; Vaishnav P Nat Commun; 2023 Nov; 14(1):7077. PubMed ID: 37925546 [TBL] [Abstract][Full Text] [Related]
13. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks. Breuer JL; Samsun RC; Stolten D; Peters R Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760 [TBL] [Abstract][Full Text] [Related]
14. Impact assessment of crude oil mix, electricity generation mix, and vehicle technology on road freight emission reduction in China. Jiang Z; Yan R; Gong Z; Guan G Environ Sci Pollut Res Int; 2023 Feb; 30(10):27763-27781. PubMed ID: 36385332 [TBL] [Abstract][Full Text] [Related]
15. Assessing the European Electric-Mobility Transition: Emissions from Electric Vehicle Manufacturing and Use in Relation to the EU Greenhouse Gas Emission Targets. Tang C; Tukker A; Sprecher B; Mogollón JM Environ Sci Technol; 2023 Jan; 57(1):44-52. PubMed ID: 36574507 [TBL] [Abstract][Full Text] [Related]
16. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles. Tong F; Jaramillo P; Azevedo IM Environ Sci Technol; 2015 Jun; 49(12):7123-33. PubMed ID: 25938939 [TBL] [Abstract][Full Text] [Related]
17. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles. Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846 [TBL] [Abstract][Full Text] [Related]
18. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India. Peshin T; Sengupta S; Azevedo IML Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339 [TBL] [Abstract][Full Text] [Related]
19. Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV). Parikh A; Shah M; Prajapati M Environ Sci Pollut Res Int; 2023 Apr; 30(20):57236-57252. PubMed ID: 37010685 [TBL] [Abstract][Full Text] [Related]
20. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts. Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]