BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34106723)

  • 1. Liquid-Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology.
    Lim J; Kumar A; Low K; Verma CS; Mu Y; Miserez A; Pervushin K
    J Phys Chem B; 2021 Jul; 125(25):6776-6790. PubMed ID: 34106723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bond guidance and aromatic stacking drive liquid-liquid phase separation of intrinsically disordered histidine-rich peptides.
    Gabryelczyk B; Cai H; Shi X; Sun Y; Swinkels PJM; Salentinig S; Pervushin K; Miserez A
    Nat Commun; 2019 Nov; 10(1):5465. PubMed ID: 31784535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues.
    Li HR; Chiang WC; Chou PC; Wang WJ; Huang JR
    J Biol Chem; 2018 Apr; 293(16):6090-6098. PubMed ID: 29511089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
    Paloni M; Bailly R; Ciandrini L; Barducci A
    J Phys Chem B; 2020 Oct; 124(41):9009-9016. PubMed ID: 32936641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs.
    Lin Y; Currie SL; Rosen MK
    J Biol Chem; 2017 Nov; 292(46):19110-19120. PubMed ID: 28924037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular condensates formed by designer minimalistic peptides.
    Baruch Leshem A; Sloan-Dennison S; Massarano T; Ben-David S; Graham D; Faulds K; Gottlieb HE; Chill JH; Lampel A
    Nat Commun; 2023 Jan; 14(1):421. PubMed ID: 36702825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu.
    Poudyal M; Patel K; Gadhe L; Sawner AS; Kadu P; Datta D; Mukherjee S; Ray S; Navalkar A; Maiti S; Chatterjee D; Devi J; Bera R; Gahlot N; Joseph J; Padinhateeri R; Maji SK
    Nat Commun; 2023 Oct; 14(1):6199. PubMed ID: 37794023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
    Chu WT; Wang J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational peptide design for regulating liquid-liquid phase separation on the basis of residue-residue contact energy.
    Kamagata K; Ariefai M; Takahashi H; Hando A; Subekti DRG; Ikeda K; Hirano A; Kameda T
    Sci Rep; 2022 Aug; 12(1):13718. PubMed ID: 35962177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Data-Driven Hydrophobicity Scale for Predicting Liquid-Liquid Phase Separation of Proteins.
    Dannenhoffer-Lafage T; Best RB
    J Phys Chem B; 2021 Apr; 125(16):4046-4056. PubMed ID: 33876938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-liquid phase separation of polymeric microdomains with tunable inner morphology: Mechanistic insights and applications.
    Bartolini A; Tempesti P; Ghobadi AF; Berti D; Smets J; Aouad YG; Baglioni P
    J Colloid Interface Sci; 2019 Nov; 556():74-82. PubMed ID: 31430708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid-liquid phase separation: Orchestrating cell signaling through time and space.
    Su Q; Mehta S; Zhang J
    Mol Cell; 2021 Oct; 81(20):4137-4146. PubMed ID: 34619090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Disassembly and Cargo Release of Phase-Separated Peptide Coacervates with Native Mass Spectrometry.
    Cerrato CP; Leppert A; Sun Y; Lane DP; Arsenian-Henriksson M; Miserez A; Landreh M
    Anal Chem; 2023 Jul; 95(29):10869-10872. PubMed ID: 37439740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain.
    Murthy AC; Dignon GL; Kan Y; Zerze GH; Parekh SH; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2019 Jul; 26(7):637-648. PubMed ID: 31270472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-Liquid Phase Separation in Crowded Environments.
    André AAM; Spruijt E
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Bari KJ; Prakashchand DD
    J Phys Chem Lett; 2021 Feb; 12(6):1644-1656. PubMed ID: 33555894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation.
    Zhang Y; Li S; Gong X; Chen J
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells.
    Ramšak M; Ramirez DA; Hough LE; Shirts MR; Vidmar S; Eleršič Filipič K; Anderluh G; Jerala R
    Nat Commun; 2023 Dec; 14(1):7973. PubMed ID: 38042897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BIAPSS: A Comprehensive Physicochemical Analyzer of Proteins Undergoing Liquid-Liquid Phase Separation.
    Badaczewska-Dawid AE; Uversky VN; Potoyan DA
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression.
    Peng Q; Wang L; Qin Z; Wang J; Zheng X; Wei L; Zhang X; Zhang X; Liu C; Li Z; Wu Y; Li G; Yan Q; Ma J
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.