BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 34106854)

  • 1. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform.
    Guo S; Feng H; Feng W; Lv G; Chen D; Liu Y; Wu X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3216-3225. PubMed ID: 34106854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wavelet Packet Transform and Convolutional Neural Network Method Based Ultrasonic Detection Signals Recognition of Concrete.
    Zhao J; Hu T; Zhang Q
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damage Localization in Composite Plates Using Wavelet Transform and 2-D Convolutional Neural Networks.
    Azuara G; Ruiz M; Barrera E
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave.
    Zhang Z; Pan H; Wang X; Lin Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epileptic Seizure Detection Using Multi-Channel EEG Wavelet Power Spectra and 1-D Convolutional Neural Networks.
    Sharan RV; Berkovsky S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():545-548. PubMed ID: 33018047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstructive sleep apnea prediction from electrocardiogram scalograms and spectrograms using convolutional neural networks.
    Nasifoglu H; Erogul O
    Physiol Meas; 2021 Jun; 42(6):. PubMed ID: 34116519
    [No Abstract]   [Full Text] [Related]  

  • 7. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks.
    Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y
    Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Pipeline Corrosion Monitoring Method Based on Piezoelectric Active Sensing and CNN.
    Yang D; Zhang X; Zhou T; Wang T; Li J
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved automated ultrasonic NDE system by wavelet and neuron networks.
    Bettayeb F; Rachedi T; Benbartaoui H
    Ultrasonics; 2004 Apr; 42(1-9):853-8. PubMed ID: 15047396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects.
    Ghafoor I; Tse PW; Rostami J; Ng KM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental Heart Sound Classification using the Continuous Wavelet Transform and Convolutional Neural Networks.
    Meintjes A; Lowe A; Legget M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():409-412. PubMed ID: 30440420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Detection of Pipeline Cracks Based on Ultrasonic Guided Waves and Convolutional Neural Network.
    Shen Y; Wu J; Chen J; Zhang W; Yang X; Ma H
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting local material thickness from steady-state ultrasonic wavefield measurements using a convolutional neural network.
    Eckels JD; Jacobson EM; Cummings IT; Fernandez IF; Ho K; Dervilis N; Flynn EB; Wachtor AJ
    Ultrasonics; 2022 Jul; 123():106661. PubMed ID: 35176690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dual-convolutional neural network model fusion for Aluminum profile surface defects classification and recognition.
    Liu X; He W; Zhang Y; Yao S; Cui Z
    Math Biosci Eng; 2022 Jan; 19(1):997-1025. PubMed ID: 34903023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals.
    Mashrur FR; Islam MS; Saha DK; Islam SMR; Moni MA
    Comput Biol Med; 2021 Jul; 134():104532. PubMed ID: 34102402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.
    Savareh BA; Emami H; Hajiabadi M; Azimi SM; Ghafoori M
    Biomed Tech (Berl); 2019 Apr; 64(2):195-205. PubMed ID: 29813023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals.
    Radhakrishnan T; Karhade J; Ghosh SK; Muduli PR; Tripathy RK; Acharya UR
    Comput Biol Med; 2021 Oct; 137():104783. PubMed ID: 34481184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.