BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34107196)

  • 1. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Mehta J
    N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107196
    [No Abstract]   [Full Text] [Related]  

  • 2. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Meisel R
    N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107195
    [No Abstract]   [Full Text] [Related]  

  • 3. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply.
    Frangoul H; Ho TW; Corbacioglu S
    N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107197
    [No Abstract]   [Full Text] [Related]  

  • 4. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia.
    Parums DV
    Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment by CRISPR-Cas9 Gene Editing - A Proof of Principle.
    Malech HL
    N Engl J Med; 2021 Jan; 384(3):286-287. PubMed ID: 33471982
    [No Abstract]   [Full Text] [Related]  

  • 6. CRISPR in personalized medicine: Industry perspectives in gene editing.
    Hong A
    Semin Perinatol; 2018 Dec; 42(8):501-507. PubMed ID: 30376985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.
    Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promising Strategies for Sickle Cell Disease and β-Thalassemia.
    Abbasi J
    JAMA; 2021 Jan; 325(2):121. PubMed ID: 33433564
    [No Abstract]   [Full Text] [Related]  

  • 9. CRISPR gene therapy shows promise against blood diseases.
    Ledford H
    Nature; 2020 Dec; 588(7838):383. PubMed ID: 33299166
    [No Abstract]   [Full Text] [Related]  

  • 10. Sickle Cell Disease Approvals Include First CRISPR Gene Editing Therapy.
    Harris E
    JAMA; 2024 Jan; 331(4):280. PubMed ID: 38170544
    [No Abstract]   [Full Text] [Related]  

  • 11. Discontinued CRISPR gene therapy for sickle-cell disease improves symptoms.
    Carvalho T
    Nat Med; 2023 Nov; 29(11):2669-2670. PubMed ID: 37783810
    [No Abstract]   [Full Text] [Related]  

  • 12. Tweaking genes with CRISPR or viruses fixes blood disorders.
    Kaiser J
    Science; 2020 Dec; 370(6522):1254-1255. PubMed ID: 33303593
    [No Abstract]   [Full Text] [Related]  

  • 13. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Advances in gene therapy for β-thalassemia and hemophilia based on the CRISPR/Cas9 technology].
    Bao LW; Zhou YY; Zeng FY
    Yi Chuan; 2020 Oct; 42(10):949-964. PubMed ID: 33229321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UK first to approve CRISPR treatment for diseases: what you need to know.
    Wong C
    Nature; 2023 Nov; 623(7988):676-677. PubMed ID: 37974039
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin.
    Ravi NS; Wienert B; Wyman SK; Bell HW; George A; Mahalingam G; Vu JT; Prasad K; Bandlamudi BP; Devaraju N; Rajendiran V; Syedbasha N; Pai AA; Nakamura Y; Kurita R; Narayanasamy M; Balasubramanian P; Thangavel S; Marepally S; Velayudhan SR; Srivastava A; DeWitt MA; Crossley M; Corn JE; Mohankumar KM
    Elife; 2022 Feb; 11():. PubMed ID: 35147495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cas9 Hammer-and Sickle: A Challenge for Genome Editors.
    Urnov FD
    CRISPR J; 2021 Feb; 4(1):6-13. PubMed ID: 33616446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation.
    Chu SH; Packer M; Rees H; Lam D; Yu Y; Marshall J; Cheng LI; Lam D; Olins J; Ran FA; Liquori A; Gantzer B; Decker J; Born D; Barrera L; Hartigan A; Gaudelli N; Ciaramella G; Slaymaker IM
    CRISPR J; 2021 Apr; 4(2):169-177. PubMed ID: 33876959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.
    Cai L; Bai H; Mahairaki V; Gao Y; He C; Wen Y; Jin YC; Wang Y; Pan RL; Qasba A; Ye Z; Cheng L
    Stem Cells Transl Med; 2018 Jan; 7(1):87-97. PubMed ID: 29164808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.
    Zeng S; Lei S; Qu C; Wang Y; Teng S; Huang P
    Hum Genet; 2023 Dec; 142(12):1677-1703. PubMed ID: 37878144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.